APRESENTAÇÃO

Neste texto são apresentados os fundamentos básicos para a solução de problemas práticos referentes aos fenômenos de transporte – mecânica dos fluidos.

O objetivo é oferecer ao estudante um texto guia aos estudos complementares extra classes. Permite que o estudante acompanhe as aulas sem a preocupação de anotar 100% das informações passadas pelo professor em sala de aula.

No Capítulo 1 apresentam-se as propriedades dos fluidos.

O Capítulo 2 contém: o teorema de Stevin, conceito de pressão em torno de um ponto, lei de Pascal, pressão no interior de uma tubulação forçada, pressões absoluta e efetiva, medidores de pressão, força sobre superfícies planas submersas em fluidos líquidos em repouso.

No Capítulo 3 são tratados os seguintes temas: regimes de escoamento, conceito de trajetórias e linhas de corrente, conceitos de descargas e de velocidade média, escoamentos unidimensional, bidimensional, e tridimensional, volume de controle, superfície do volume de controle, equação da continuidade.

No Capítulo 4 apresentam-se as modalidades de energia associadas ao fluido, equação de Bernoulli, equação de energia e máquinas, potência da máquina e rendimento, equação da energia para fluido real.

No Capítulo 5 apresenta-se o conceito de análise dimensional, e desenvolvimento de equações utilizando o teorema dos (πs) de Buchingham.

No Capítulo 6 são apresentados os processos de transferência de calor por condução, convecção e radiação e a condução unidimensional em regime permanente em parede plana.

No Capítulo 7 é deduzida a equação do impulso ou da quantidade de movimento e simplificada para as principais aplicações práticas da engenharia, considerando escoamentos permanentes.

Ao final de cada capítulo são apresentados problemas práticos de aplicação.
SUMÁRIO

CAPÍTULO 1
PROPRIEDADES DOS FLUIDOS
1.1 Introdução ... 1
1.2 Viscosidade absoluta ou dinâmica .. 1
1.3 Massa específica .. 3
1.4 Peso específico .. 4
1.5 Viscosidade cinemática ... 5
1.6 Fluido ideal ... 6
1.7 Fluido ou escoamento incompressível 6
1.8 Equação de estado dos gases ... 7
1.9 Exercícios ... 9

CAPÍTULO 2
ESTÁTICA DOS FLUIDOS.. 12
2.1 Introdução ... 12
2.2 Teorema de Stevin ... 12
2.3 Pressão em torno de um ponto ... 13
2.4 Lei de Pascal ... 14
2.5 Pressão no interior de uma tubulação forçada 15
2.6 Pressões absoluta e efetiva ... 15
2.7 Medidores de pressão .. 16
2.8 Força sobre superfícies planas submersas em fluidos líquidos em repouso 20
2.9 Exercícios ... 23

CAPÍTULO 3
CINEMÁTICA DOS FLUIDOS.. 28
3.1 Introdução ... 28
3.2 Regimes de escoamentos .. 28
3.3 Trajetórias e linhas de corrente .. 31
3.4 Vazão, velocidade média, descarga em massa e em peso .. 31
3.5 Escoamento unidimensional, bidimensional, e tridimensional 34
3.6 Volume de controle ... 35
3.7 Superfícies do volume de controle 35
3.8 Equação da continuidade ... 35
3.9 Exercícios ... 39

CAPÍTULO 4
EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE 43
4.1 Introdução ... 43
4.2 Modalidades de energia associadas a um fluido 43
4.3 Equação de Bernoulli .. 46
4.4 Equação de energia e máquinas 47
4.5 Potência da máquina e rendimento 48
4.6 Equação da energia para fluido real 52
IV

FENÔMENOS DE TRANSPORTE
Professores: Camila Maria Mateus Alves de Souza; Evaldo Miranda Coiado; Laura Maria Canno Ferreira Fais; Victor de Barros Deantoni

4.7 Exercícios... 53
CAPÍTULO 5
ANÁLISE DIMENSIONAL
5.1 Introdução... 58
5.2 Grandezas.. 58
5.3 Representações das relações físicas... 58
5.4 Desenvolvimento de equações. Teorema dos (πs) de Buckingham....................................... 59
5.5 Grupos adimensionais importantes na mecânica dos fluidos... 63
5.6 Exercícios.. 63
CAPÍTULO 6
FENÔMENOS DE TRANSFERÊNCIAS
6.1 Introdução.. 65
6.2 Processos de transferência de calor... 65
6.3 Condução unidimensional em regime permanente em parede plana............................... 70
6.4 Exercícios.. 72
CAPÍTULO 7
TEOREMA DO IMPULSO OU DA QUANTIDADE DE MOVIMENTO
7.1 Introdução.. 80
7.2 Definição.. 80
7.3 Equação do impulso ou da quantidade de movimento... 80
7.4 Exercícios.. 84
CAPÍTULO 1 – PROPRIEDADES DOS FLUÍDOS

1.1 Introdução

Os materiais encontrados na natureza: sólido e fluido.

Sólido: tem forma própria, quando submetido à uma força tangencial constante deforma angularmente até alcançar uma nova posição de equilíbrio estático adquirindo uma nova forma.

Fluido: (líquidos e gases). Não têm forma própria. Quando submetidos à uma força tangencial constante deformam-se continuamente não atingindo uma nova configuração de equilíbrio estático. Assumem o formato do recipiente que os contém.

1.2 Viscosidade absoluta ou dinâmica (μ)

1.2.1. Tensão de cisalhamento – Lei da Viscosidade de Newton

Considere duas placas planas distanciadas por (e), contendo inicialmente entre elas um fluido qualquer em repouso. Submeta uma das placas à uma força tangencial (Ft) de modo a adquirir uma velocidade constante (V₀), figura 1.1. Mantenha a outra placa em repouso (V=0).

![Figura 1.1](image)

A tensão de cisalhamento (τ) é calculada por:

\[\tau = \frac{F_t}{A} \]

(1.1)

Na qual:

Ft = força tangencial;
A = área da placa.
Por outro lado, a lei de Newton da viscosidade impõe que a tensão de cisalhamento (τ) é proporcional ao gradiente de velocidade (dV/dy), figura 1.1, ou seja:

\[\tau \propto \frac{dV}{dy} \] \hspace{1cm} (1.2)

O coeficiente de proporcionalidade entre a tensão de cisalhamento e o gradiente de velocidade é denominado de viscosidade absoluta ou dinâmica (µ), assim;

\[\tau = \mu \frac{dV}{dy} \] \hspace{1cm} (1.3)

“Viscosidade é a propriedade que indica a maior ou menor dificuldade de um fluido escorrer”.

“Os fluidos que obedecem a lei de Newton são denominados de fluidos newtonianos”.

1.2.2. Unidades: Sistema FLT (F=força; L=comprimento; T=tempo)

\[\mu = \frac{\tau}{dV} = \frac{\tau.dy}{dV} \] \hspace{1cm} (1.4)

\[[\mu] = \left[\frac{F}{L^2} \right] = \left[\frac{F.T}{L^2} \right] = \left[F.L^{-2}.T \right] \]

MK*Ś (Técnico): \(\mu = \left(\frac{kgf.s}{m^2} \right) \)

MKS Giorgi ou SI: \(\mu = \left(\frac{N.s}{m^2} \right) \)

CGS: \(\mu = \left(\frac{dina.s}{cm^2} \right) = \) poise
Para (e) pequeno, da ordem de milímetros, pode-se assumir perfil de velocidades linear, figura 1.2, então:

$$\tau = \mu \frac{V_0}{e}$$ \hspace{1cm} (1.5)

Figura 1.2

1.3 Massa específica (ρ)

Massa específica de uma quantidade de um fluido é a relação entre a sua massa (M) e o seu volume (V_{vol}):

$$\rho = \frac{M}{V_{vol}}$$ \hspace{1cm} (1.6)

1.3.1. Unidades: Sistema FLT (F=força; L=comprimento; T=tempo)

$$F = M \cdot a \quad \text{ou} \quad M = \frac{F}{a}$$ \hspace{1cm} (1.7)

Na qual:

- M = massa;
- a = aceleração;
- F = força.
\[
\rho = \frac{F}{aV_{vol}}
\]

(1.8)

\[
[\rho] = \left[\frac{F}{L^2T^3} \right] = \left[F.L^{-2}.T^{-3} \right]
\]

1.4 Peso específico (\(\gamma\))

Peso específico de uma quantidade de fluido é a relação entre o seu peso (G) e o seu volume (\(V_{vol}\)):

\[
\gamma = \frac{G}{V_{vol}}
\]

(1.9)

1.4.1. Unidades: Sistema FLT (F=força; L=comprimento; T=tempo)

\[
[\gamma] = \left[\frac{F}{L^3} \right] = \left[F.L^{-3} \right]
\]

MK*S (Técnico): \(\gamma = \left(\frac{kgf}{m^3} \right)\)

MKS Giorgi ou SI: \(\gamma = \left(\frac{Ns^2}{m^4} \right)\)

CGS: \(\gamma = \left(\frac{dina.s^2}{cm^4} \right)\)

1.4.2. Relação entre peso específico (\(\gamma\)) e massa específica (\(\rho\))

\[
\gamma = \frac{G}{V_{vol}}
\]

(1.10)
Mas

\[G = M \cdot g \]

(1.11)

Na qual:

- \(M \) = massa;
- \(g \) = aceleração da gravidade.

\[\gamma = \frac{M \cdot g}{V_{vol}} \]

(1.12)

\[\gamma = \rho \cdot g \]

(1.13)

1.4.3. Densidade relativa de fluidos (dr)

Mantidas as mesmas temperaturas e pressões, a densidade relativa de fluidos é a relação entre a massa específica ou o peso específico do fluido e a massa específica ou peso específico de fluidos padrões. Para os líquidos a água é tomada como fluido padrão, e para os gases o ar é tomado como fluido padrão.

\[dr = \frac{\rho}{\rho_p} = \frac{\gamma}{\gamma_p} \]

(1.14)

Na qual:

- \(\rho \) = massa específica de um fluido qualquer;
- \(\rho_p \) = massa específica de um fluido padrão;
- \(\gamma \) = peso específico de um fluido qualquer;
- \(\gamma_p \) = peso específico de um fluido padrão.

1.5 Viscosidade cinemática (\(\nu \))

Viscosidade cinemática (\(\nu \)) é a relação entre a viscosidade absoluta ou dinâmica (\(\mu \)) e a massa específica (\(\rho \)):

\[\nu = \frac{\mu}{\rho} \]

(1.15)
1.5.1. Unidades: Sistema FLT (F=força; L=comprimento; T=tempo)

\[
[v] = \frac{[F,T]}{L^2} = \left[\frac{L^2}{T} \right]
\]

MK*S (Técnico): \(\nu = \left(\frac{m^2}{s} \right) \)

MKS Giorgi ou SI: \(\nu = \left(\frac{m^2}{s} \right) \)

CGS: \(\nu = \left(\frac{cm^2}{s} \right) = \text{stoke (St)} \)

[centistoke (cSt) = 0,01 St]

1.6 Fluido ideal

Fluido ideal é aquele cuja viscosidade é nula, neste caso o fluido escoa sem perdas de energia por atrito. Nenhum fluido possui esta propriedade, na prática algumas vezes será admitida essa hipótese quando a viscosidade não influenciar significativamente no fenômeno.

1.7 Fluido ou escoamento incompressível

Considere na figura 1.3, um fluido contido num recipiente cilindro sendo submetido a uma força normal (Fn) através de um êmbolo de seção transversal (A).

O coeficiente entre a força normal (Fn) e a área (A) é denominado de pressão, ou seja:

\[
p = \frac{Fn}{A}
\]

(1.16)
1.7.1. Unidades: Sistema FLT (F=força; L=comprimento; T=tempo)

\[[p] = \frac{[F]}{[L]^2} \]

MK*S (Técnico): \(p = \left(\frac{kgf}{m^2} \right) \)

MKS Giorgi ou SI: \(p = \left(\frac{N}{m^2} \right) = Pa \) (pascal)

\[
\begin{bmatrix}
1,0 \frac{kgf}{cm^2} = 10^4 \frac{kgf}{m^2} = 9,8x10^4 Pa = 0,98 bar = 14,2 psi
\end{bmatrix}
\]

Um fluido é denominado incompressível quando o seu volume não varia ao alterar a pressão. Isto implica em afirmar que a sua massa específica, ou o seu peso específico, mantém-se constante. Na prática os líquidos são considerados incompressíveis.

1.8 Equação de estado dos gases

Quando o fluido não puder ser considerado incompressível e ao mesmo tempo houver efeito térmico, haverá necessidade de se determinar as variações da massa específica (\(\rho \)) em função da temperatura e da pressão.
1.8.1. Equação de estado para gas perfeito

\[\frac{p}{\rho} = R \cdot T \] \hspace{1cm} (1.18)

Na qual:

- \(p \) = pressão absoluta;
- \(R \) = constante cujo valor depende do gás, (para o ar, \(R \approx 287 \text{ m}^2/\text{s}^2\cdot\text{K} \));
- \(T \) = temperatura absoluta (obs.: a escala absoluta é a escala Kelvin e K=°C+273).

Numa mudança do estado de um gás, para \(R = \text{cte} \), tem-se:

\[\frac{p_1 \cdot \rho_2}{p_2 \cdot \rho_1} = \frac{T_1}{T_2} \] \hspace{1cm} (1.19)

Processo isotérmico: quando não há variação de temperatura. Neste caso:

\[\frac{p_1}{\rho_1} = \frac{p_2}{\rho_2} = \text{cte} \] \hspace{1cm} (1.20)

Processo isobárico: quando não há variação de pressão: Neste caso:

\[\rho_1 \cdot T = \rho_2 \cdot T = \text{cte} \] \hspace{1cm} (1.21)

Processo isocórico ou isométrico: quando não há variação de volume: Neste caso:

\[\frac{p_1}{T_1} = \frac{p_2}{T_2} = \text{cte} \] \hspace{1cm} (1.22)

Processo adiabático: quando na transformação não há troca de calor: Neste caso:

\[\frac{p_1}{\rho_1^k} = \frac{p_2}{\rho_2^k} = \text{cte} \] \hspace{1cm} (1.23)

Na qual \(k \) é denominada constante adiabática cujo valor depende do gás. No caso do ar, \(k=1,4 \).
1.9 Exercícios

1.1. A viscosidade cinemática de um óleo é 0,028 m²/s e a sua densidade relativa vale 0,85. Determinar a viscosidade dinâmica ou absoluta no Sistema Internacional (SI). Dado: g=10 m/s². [R.: 23,8 N.s/m²]

1.2. A viscosidade dinâmica ou absoluta de um óleo é 5x10⁻⁴ kgf.s/m² e a sua densidade relativa vale 0,82. Determinar a viscosidade cinemática nos sistemas MK*S, SI, e CGS. Dados: g=10 m/s²; γ_H₂O=1000 kgf/m³. [R.: υ = 6x10⁻⁶ m²/s (MK*S e SI), υ = 6x10⁻² St]

1.3. São dadas duas placas planas paralelas distanciadas de e= 2mm. A placa superior (placa 1) move-se com uma velocidade de 4 m/s, enquanto a inferior (placa 2) é fixa. Se o espaço entre as placas for preenchido com óleo (υ = 1,0x10⁻⁵ m²/s; γ=8300 N/m³), qual será a tensão de cisalhamento (τ) que agirá no óleo?. [R.: 16,6 N/m²]

![Diagrama de placas e óleo](image)

1.4. Uma placa quadrada de 1,0m de lado e 20 N de peso desliza sobre um plano inclinado de 30⁰, sobre uma película de óleo. A velocidade da placa é de 2 m/s e mantida constante. Qual é a viscosidade dinâmica do óleo se a espessura da película é de 2mm?. [R.: µ=10⁻² N.s/m²].

![Diagrama de placa deslizando](image)
1.5. O pistão da figura tem uma massa de 0,5 kg. O cilindro de comprimento ilimitado é puxado para cima com velocidade constante. O diâmetro do cilindro é 10 cm e do pistão é 9 cm, e entre os dois existe um óleo de viscosidade cinemática $\nu = 10^{-4}$ m2/s e peso específico $\gamma = 8000$ N/m3. Com que velocidade deve subir o cilindro para que o pistão mantenha o movimento permanente uniforme? Considere o perfil de velocidade linear, e a aceleração da gravidade $g=10$ m/s2. [R.: $V_0 = 22,1$ m/s].

![Diagrama de óleo e pistão]

1.6. Assumindo o diagrama de velocidades indicado na figura, em que a parábola, $(V=a.y^2+b.y+c)$, tem seu vértice a 10 cm do fundo, calcular o gradiente de velocidade e a tensão de cisalhamento para $y=0; 5, 10$ cm. Adotar $\mu = 400$ centipoises. [R.: $(50$ s$^{-1}; 200$ dina/cm$^2), (25$ s$^{-1}; 100$ dina/cm$^2), (0; 0)]$.

![Diagrama de perfil de velocidades]

1.7. Ar escoa ao longo de uma tubulação. Em uma seção (1), $p_1=200.000$ N/m2 (abs) e $T_1=50$ °C. Em uma seção (2), $p_2=150.000$ N/m2 (abs) e $T_2 = 20$ °C. Determinar a variação porcentual da massa específica de (1) para (2). [R.: -17,3%].

1.8. Um gás natural tem densidade relativa igual a 0,6 em relação ao ar a 9,8x104 Pa (abs) e 15 °C. Qual é o peso específico desse gás nas mesmas condições de pressão e
temperatura? Qual é a constante (R) desse gás? Dados: (R\textsubscript{ar} = 287 m2/s2.K; g=9,8 m/s2). [R.: γ=7 N/m3; R=478 m2/s2.K].

1.9. Calcular o peso específico do ar a 441 kPa (abs) e 38 \textdegree C. [R.:49,4 N/m3].

1.10. Um volume de 10 m3 de dióxido de carbono (k=1,28) a 27 \textdegree C e 133,3 kPa (abs) é comprimido até se obter 2 m3. Se a compressão é isotérmica, qual será a pressão final? Qual seria a pressão final se o processo fosse adiabático?. R.: [666,4 Kpa (abs); 1,046 Mpa (abs)].
CAPÍTULO 2 – ESTÁTICA DOS FLUIDOS

2.1 Introdução

Uma força (F), figura 2.1, aplicada sobre uma superfície com um ângulo de inclinação (α), resultará uma componente normal (Fn) e uma outra tangencial (Ft). A relação entre a força normal (Fn) e a área (A) é a pressão, e a divisão entre a força tangencial (Ft) e a área (A) obtém-se a tensão de cisalhamento.

Se (Fn) representa a força normal que age na área (A), e (dFn) a força normal que age num infinitésimo de área (dA), a pressão num ponto será:

$$p = \frac{dF_n}{dA} \quad (2.1)$$

No caso da pressão ser uniforme, sobre toda a área (A), ou se desejar trabalhar com a pressão média, então:

$$p = \frac{F_n}{A} \quad (2.2)$$

2.2. Teorema de Stevin

Considere na figura 2.2, uma porção de líquido prismática de área transversal infinitesimal (dA) posicionada entre as profundidades (M) e (N) distanciadas de uma altura (h).

O peso (G) da porção de líquido, de peso específico (γ), vale:

$$G = \gamma \cdot Vol. \quad (2.3)$$

Ou
Como a porção de líquido está em repouso (em equilíbrio), então:

\[\sum F = 0 \]
\[pM \cdot dA + \gamma \cdot h \cdot dA = pN \cdot dA \]
\[pN - pM = \gamma \cdot h = \gamma \cdot (hN - hM) \]

“A diferença de pressão entre dois pontos de um fluido em repouso é igual ao produto do seu peso específico pela diferença de cotas dos dois pontos”

2.3 Pressão em torno de um ponto

Considere a figura 2.3a uma tubulação transportando um fluido que se bifurca na posição (o), e na figura 2.3b um ponto (o) de um fluido em repouso. Nas duas situações a pressão no ponto (o) é a mesma em qualquer direção, ou seja, a pressão no ponto não se divide.
2.4 Lei de Pascal

Considere na figura 2.4a, os pontos (1), (2), e (3) de uma massa fluida (líquida) em repouso e a superfície livre de área (A). Utilizando um êmbolo aplique uma força (\(F_n\)) sobre a superfície livre de área (A). A pressão resultante da aplicação da força (\(F_n\)) sobre a área (A) será transmitida integralmente para os pontos (1), (2), e (3). De modo que a lei de Pascal é anunciada como se segue:

“A pressão aplicada num ponto de um fluido em repouso transmite-se integralmente a todos os pontos do fluido”

Na figura 2.4a, as pressões nos pontos (1), (2), e (3) são dadas por:
\[p_1 = \gamma \cdot h_1 \] (2.8)
\[p_2 = \gamma \cdot h_2 \] (2.9)
\[p_3 = \gamma \cdot h_3 \] (2.10)

Da lei de Pascal, na figura 2.4b, as pressões nos pontos (1), (2), e (3) resultam:

\[p_1 = \gamma \cdot h_1 + \frac{F_n}{A} \] (2.11)
\[p_2 = \gamma \cdot h_2 + \frac{F_n}{A} \] (2.12)
\[p_3 = \gamma \cdot h_3 + \frac{F_n}{A} \] (2.13)

2.5 Pressão no interior de uma tubulação forçada

Tomando-se como referencial o centro de uma tubulação por onde escoa um fluido líquido de peso específico \((\gamma)\), ao instalar um piezômetro, (tubo transparente vertical aberto graduado), subirá pelo mesmo uma coluna de líquido de altura \((h)\). Baseando-se no teorema de Stevin, a pressão \((p)\) no centro do tubo será igual a:

\[p = \gamma \cdot h \] (2.14)

A coluna líquida de altura \((h)\) é denominada carga de pressão:

\[h = \frac{p}{\gamma} \] (2.15)

2.6 Pressões absoluta e efetiva (relativa)

Se a pressão for medida em relação ao vácuo ou zero absoluto, é denominada de pressão absoluta \((p_{ab})\). Quando for medida adotando-se a pressão atmosférica \((p_{at})\) como referência, é chamada de pressão efetiva ou relativa \((p_{ef})\), figura 2.5.
Os aparelhos de medida de pressão (manômetros) registram zero quando expostos à pressão atmosférica, portanto medem a diferença entre a pressão do fluido e a do meio em que se encontram.

Se a pressão for menor que a atmosférica a pressão efetiva será negativa. Todos os valores da pressão na escala absoluta são positivos.

2.7 Medidores de pressão

2.7.1. Barômetro

A pressão atmosférica é medida pelo barômetro, figura 2.6. Se um tubo cheio de um líquido, for virado dentro de um recipiente contendo o mesmo líquido, ele descera até uma determinada posição e nela permanecerá em equilíbrio, ou seja, a carga de pressão devida à coluna líquida contida no tubo será igual à pressão atmosférica expressa em coluna do líquido.

\[\frac{\text{pat}}{\gamma} + \frac{\text{pref}}{\gamma} = \frac{\text{pab}}{\gamma} \]

Ref. efetivo

\[\frac{\text{pref}}{\gamma} \]

(+)

Ref. absoluto

\[\frac{\text{pat}}{\gamma} \]

(-)

zero absoluto (vácuo absoluto)
Figura 2.6

\[\gamma h = \gamma \text{pat} \] (2.16)

O líquido utilizado é, geralmente, o mercúrio, já que o seu peso específico é elevado resultando valor de \((h)\) pequeno, podendo então utilizar tubos de vidro curtos.

A pressão atmosférica varia com a altitude, ao nível do mar o seu valor vale:

\[
\text{Pat} = 760 \text{ mmHg} = 10.330 \text{ kgf/m}^2 = 101.300 \text{ N/m}^2 \text{ (Pa)}
\]

2.7.2. Manômetro de Bourdon

Pressões efetivas positivas ou negativas podem ser medidas pelo manômetro de Bourdon, figura 2.7.
A leitura da pressão efetiva \((p)\) é feita diretamente no mostrador, quando a parte externa do manômetro estiver exposta à pressão atmosférica.

Quando a parte interna do tubo metálico está sujeito à pressão \((p_1)\) e a externa está submetido à pressão \((p_2)\), figura 2.8, o manômetro indicará a diferença \((p_1 - p_2)\), assim:

\[
p_{\text{manômetro}} = p_{\text{omada}} - p_{\text{externa}}
\] (2.17)

Figura 2.8

2.7.3. Piezômetro

Consiste num tubo transparente de vidro ou outro material com uma escala, ligado a um reservatório ou a um tubo, permite medir a pressão efetiva \((p)\), figura 2.9. O piezômetro permite medir somente pressões efetivas positivas de líquidos.

\[
h = \frac{p}{\gamma}
\]

Figura 2.9
2.7.4. Manômetro com tubo em U

O manômetro com tubo em U, figura 2.10, permite medir pressões efetivas positivas e negativas de líquidos e gases. No caso de se desejar medir pressões muito altas podem-se utilizar fluidos manométricos de pesos específicos mais altos que o do fluido em escoamento.

A pressão efetiva \(p \) será igual a:

\[
\begin{align*}
 p &= -\gamma_f h_1 + \gamma_{fm} h_2
\end{align*}
\] \((2.18) \)

Na qual:

\(\gamma_f \) = peso específico do fluido qualquer que escoa pela tubulação;

\(\gamma_{fm} \) = peso específico do fluido manométrico.

2.7.5. Equação manométrica

É a expressão que permite, por meio de um manômetro em U, determinar a diferença de pressões entre dois pontos. Seja pressões distintas \((p_A) \) e \((p_B) \) de duas tubulações, figura 2.11.
Figura 2.11

A diferença entre as pressões (pA) e (pB) pode ser calculada utilizando a seguinte equação manométrica:

\[p_A + \gamma_A h_1 - \gamma_M h_2 - \gamma_B h_3 = p_B \] \hspace{1cm} (2.19)

Portanto:

\[p_A - p_B = -\gamma_A h_1 + \gamma_M h_2 + \gamma_B h_3 \] \hspace{1cm} (2.20)

2.8 Força sobre superfícies planas submersas em fluidos líquidos em repouso

O cálculo do módulo da força (F) resultante das pressões sobre a superfície submersa de área (A), figura 2.12, é calculada utilizando a seguinte equação:

\[F = \gamma_I . H_{CG} . A \] \hspace{1cm} (2.21)

Na qual:

\(H_{CG} \) = distância vertical entre a superfície livre da água e o centro de gravidade da superfície submersa de área (A);
\(\gamma_I \) = peso específico do líquido;
2.8.1. Centro das pressões

O centro de pressões é o ponto de aplicação da força resultante das pressões sobre a área submersa de área (A). Este ponto (CP) localiza-se abaixo do centro de gravidade (CG).

A posição do centro de pressões (CP) na direção do eixo (y), figura 2.12, será dada pela seguinte expressão:

\[
y_{CP} = y_{CG} + \frac{I_{CG}}{A_y y_{CG}}
\]

(2.22)

Na qual:
\[y_{CP} = \frac{H_{CP}}{\sin \alpha} \] \hspace{1cm} (2.23)

\[y_{CG} = \frac{H_{CG}}{\sin \alpha} \] \hspace{1cm} (2.24)

\(I_{CG} \) = momento de inércia calculado em relação a um eixo que passa pelo centro de gravidade da superfície de área \((A) \). Na figura 2.13, apresentam expressões para se calcular o \(I_{CG} \) dos principais formatos de áreas.

<table>
<thead>
<tr>
<th>Forma</th>
<th>Expressão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paralelepípedo</td>
<td>(I_{CG1} = \frac{b \cdot y^3}{12})</td>
</tr>
<tr>
<td>Triângulo</td>
<td>(I_{CG1} = \frac{b \cdot y^3}{36})</td>
</tr>
<tr>
<td>Círculo</td>
<td>(I_{CG1} = \frac{\pi \cdot r^4}{4})</td>
</tr>
<tr>
<td>Semicírculo</td>
<td>(I_{CG1} = \left(\frac{\pi}{8} - \frac{8}{9 \cdot \pi} \right) r^4)</td>
</tr>
</tbody>
</table>

Figura 2.13
2.9 Exercícios

2.1. A figura mostra, esquematicamente, uma prensa hidráulica. Os dois êmbolos têm, respectivamente, as áreas $A_1 = 10 \text{ cm}^2$ e $A_2 = 100 \text{ cm}^2$. Se for aplicada uma força de 200N no êmbolo (1), qual será a força transmitida em (2)? [R.: $F_2 = 2000 \text{ N}$].

2.2. Qual é a altura da coluna de mercúrio ($\gamma_{\text{Hg}} = 136.000 \text{ N}/\text{m}^3$) que irá produzir na base a mesma pressão de uma coluna de água de 5m de altura?. Dado: ($\gamma_{\text{H2O}} = 10.000 \text{ N}/\text{m}^3$). [R.: 368 mm].

2.3. No manômetro da figura, o fluido (A) é água e o (B), mercúrio. Qual é a pressão (p1)? Dados: ($\gamma_{\text{Hg}} = 136.000 \text{ N}/\text{m}^3$; $\gamma_{\text{H2O}} = 10.000 \text{ N}/\text{m}^3$). [R.: 13,35 kPa].

2.4. No manômetro diferencial da figura, o fluido (A) é água, (B) é óleo e o fluido manométrico é mercúrio. Considerando $h_1 = 25 \text{ cm}$, $h_2 = 100 \text{ cm}$, $h_3 = 80 \text{ cm}$, e $h_4 = 10 \text{ cm}$, qual é a diferença de pressão ($p_A - p_B$)? Dados: ($\gamma_{\text{Hg}} = 136.000 \text{ N}/\text{m}^3$; $\gamma_{\text{H2O}} = 10.000 \text{ N}/\text{m}^3$; $\gamma_{\text{óleo}} = 8.000 \text{ N}/\text{m}^3$). [R.: $p_A - p_B = -132,1 \text{ kPa}$].
2.5. Determinar as pressões efetivas e absolutas:

a) do ar;

b) no ponto (M), do esquema da próxima figura.

Dados: leitura barométrica 740 mmHg; $\gamma_{\text{Hg}} = 136.000 \text{ N/m}^3; \gamma_{\text{óleo}} = 8.500 \text{ N/m}^3.$

[R.: a) $p_{\text{ar(ef)}} = 34 \text{ kPa}; p_{\text{ar(abs)}} = 132,7 \text{ kPa};$ b) $p_{\text{M(ef)}} = 36,55 \text{ kPa}; p_{\text{M(abs)}} = 135,3 \text{ kPa}].$

2.6. Aplica-se uma força de 200 N na alavanca da figura. Qual é a força (F) que deve ser exercida sobre a haste do cilindro para que o sistema permaneça em equilíbrio? Dados:

D1 = 25 cm; D2 = 5 cm. [R.: F = 10.000 N].
2.7. Determinar o módulo da força exercida pela água na comporta vertical, mostrada na figura, medindo 3m x 4m, cujo topo encontra-se a 5m de profundidade. Calcule, também, a posição do centro de pressões (utilizar o SI, $\gamma_{\text{H}_2\text{O}} = 10.000 \text{ N/m}^3$). [R.: $F = 780000 \text{ N}$; $y_{cp} = 6,615 \text{m}$].

2.8. Uma caixa de água de 800 litros mede (1,00 m \times 1,00 m \times 0,80 m). Determinar o módulo da força que atua em uma das suas paredes laterais e o seu ponto de aplicação. Dados: $g=10 \text{ m/s}^2$; $\gamma_{\text{H}_2\text{O}} = 10.000 \text{ N/m}^3$. [R.: $F = 3200 \text{N}$; $y_{cp} = 0,534 \text{m}$].

2.9. Calcular os módulos e as linhas de ação das componentes do empuxo que age sobre a comporta cilíndrica da figura, de 3,28 m de comprimento, e raio igual a 1,96m. Dados: Dados: $g=10 \text{ m/s}^2$; $\gamma_{\text{H}_2\text{O}} = 10.000 \text{ N/m}^3$ [R.: $F_H = 63.000 \text{N}$; $F_V = 98960 \text{N}$; $y_{cp} = 1,31 \text{m}$; $x=0,83 \text{m}$].
2.10. A superfície mostrada na figura, com dobradiça ao longo de (A), tem 5m de largura. Determinar a força (F) da água sobre a superfície inclinada, o ponto de sua aplicação e o esforço na dobradiça (utilizar o SI). Dado: $\gamma_{\text{H}_2\text{O}} = 9.800 \text{ N/m}^3$. [R.: $F = 588.000 \text{N}$; $y_{cp} = 6,22\text{m}$; $F_A=262.000\text{N}$].

2.11. Determinar o momento (M), necessário para que a comporta da figura mantenha-se fechada. A comporta está articulada em (o) e apoiada em (B). A largura da comporta é igual a 1,80m. [R.: $M = 5.230 \text{N.m}$].
Quadro 1 – Conversão de pressões para o pascal.

<table>
<thead>
<tr>
<th>Pressão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosfera (atm)</td>
</tr>
<tr>
<td>Bar (bar)</td>
</tr>
<tr>
<td>Kgf/cm²</td>
</tr>
<tr>
<td>Metro de água (mH₂O) a 4 °C</td>
</tr>
<tr>
<td>Milímetro de mercúrio (mmHg) ou (torr) a 0°C</td>
</tr>
</tbody>
</table>
CAPÍTULO 3 – CINEMÁTICA DOS FLUIDOS

3.1 Introdução

Cinemática é a parte da mecânica que se ocupa do movimento dos corpos, portanto, neste capítulo serão estudados os fluidos em movimento.

3.2 Regimes de escoamentos

3.2.1 Variável

O movimento do fluido é dito variável quando os elementos que o definem (velocidade, força, pressão, e etc.) são função do ponto (posição) e do tempo. Considere, por exemplo, na figura 3.1, um reservatório sendo esvaziado rapidamente. Num determinado instante (t) os valores das velocidades de escoamento em tubos extravasores acoplados à parede do reservatório nas posições (1) e (2) são diferentes. Com o passar do tempo as velocidades numa mesma posição (1) ou (2) assumem também valores diferentes.

![Diagrama de escoamento variável](image)

Figura 3.1

3.2.2 Permanente

O movimento do fluido é dito permanente quando os elementos que o definem (velocidade, força, pressão, e etc.) são função exclusiva do ponto (posição), e não variam com do tempo. Considere, por exemplo, na figura 3.2, um reservatório de grandes dimensões com um pequeno orifício, tal que no decorrer de um determinado período de tempo o nível da água mantém-se constante.
3.2.3 Escoamentos laminar e turbulento [Experiência de Osborne Reynolds (1883)]

Para caracterizar os regimes de escoamento, levando em consideração o efeito viscoso do fluido em movimento, Reynolds no ano de 1883 realizou a experiência que ficou denominada de Experiência de Reynolds, descrita a seguir e ilustrada pela figura 3.3.

Em uma das paredes de um reservatório, contendo água de massa específica \(\rho_a \), foi acoplada uma das extremidades de um tubo de vidro transparente de diâmetro \(D \). Próxima da outra extremidade a velocidade média do fluido era controlada através de uma válvula de controle (VC). No centro do tubo transparente era injetado um líquido corante de massa específica \(\rho_c \) igual à massa específica da água. Inicialmente mantida a velocidade de escoamento com um valor muito baixo, tal que o valor do número de Reynolds, calculado com a equação adimensional (3.1) resultasse inferior a 2000, foi verificado que o filete de corante movimentava em linha reta, numa demonstração que forças turbulentas normais ao escoamento eram totalmente anuladas. Uma vez que a velocidade máxima ocorre no centro do tubo e diminui até zero junto à parede do tubo, em qualquer outra posição de sua seção transversal comportamento semelhante é observado. Assim, a perda de energia, (perda de carga \(\Delta h \)), deve-se ao atrito entre lâminas concêntricas de fluidos de velocidades diferentes. Devido a esta característica o escoamento é denominado laminar.

Aumentando a velocidade média tal que resulte valores do número de Reynolds entre o intervalo 2000 a 4000, forças normas ao escoamento passam a intensificar-se, de
modo que o filete de corante começa a sofrer oscilações. Para este intervalo o escoamento é dito de transição ou crítico.

Para valores do número de Reynolds superior a 4000 o filete desintegra-se, as partículas fluidas movimentam-se de modo desordenado chocando-se uma contra as outras, e o escoamento é denominado de turbulento. Nesta situação a perda de carga deve-se em parte ao choque entre as partículas.

\[\text{Rey} = \frac{V \cdot D}{\nu} \]

Na qual:

Rey = número de Reynolds (adimensional);
V = velocidade média do escoamento do fluido;
D = diâmetro do tubo;
\(\nu \) = viscosidade cinemática do fluido em escoamento.

\[\text{Rey} = \frac{V \cdot D}{\nu} \] (Número de Reynolds)

Figura 3.3
Escoamento laminar: Rey \(\leq 2000 \) \hspace{1cm} (3.2)

Escoamento crítico ou de transição: \(2000 < \text{Rey} \leq 4000 \) \hspace{1cm} (3.3)

Escoamento turbulento: Rey > 4000 \hspace{1cm} (3.4)

3.3 Trajetórias e linhas de corrente

3.3.1 Trajetória

Trajetória é o caminho percorrido por uma partícula em instantes sucessivos.

3.3.2 Linhas de corrente

Linha de corrente é a linha tangente aos vetores da velocidade de diferentes partículas no mesmo instante.

3.4 Vazão, velocidade média, descarga em massa e em peso

3.4.1 Vazão

Vazão é o volume de fluido que escoa através de uma seção em um intervalo de tempo unitário. Unidades: \(\frac{L^3}{T} \), \(\frac{m^3}{s} \), \(\frac{L}{s} \), \(\frac{m^3}{h} \), e etc. Seja na figura 3.4, um volume elementar (dvol) que leva um tempo (dt) para atravessar a seção (S). A vazão é então dada pela seguinte relação:

\[
\frac{dQ}{dt} = \frac{dvol}{dt} = \frac{dx.dA}{dt}
\]

\(dQ = V.dA\) \hspace{1cm} (3.6)
A vazão que escoa que pela área \(A \) é dada por:

\[
Q = \int_A V \, dA
\]
(3.7)

3.4.2 Velocidade média na seção

Define-se velocidade média na seção como uma velocidade uniforme que, substituída no lugar da velocidade real, figura 3.5, reproduziria a mesma vazão na seção.

\[
Q = \int_A V \, dA = V_m \cdot A
\]
(3.8)

Dessa igualdade, surge a expressão para o cálculo da velocidade média na seção:

\[
V_m = \frac{1}{A} \int_A V \, dA
\]
(3.9)
3.4.3 Relação entre a velocidade máxima e a velocidade média

No escoamento laminar de um fluido em condutos circulares, o diagrama de velocidades e representado pela equação, \(\frac{\text{\(V\)}}{\text{\(V_{max}\)}} = \left(1 - \left(\frac{\text{\(r\)}}{\text{\(R\)}}\right)^2\right) \), na qual \(\text{\(V_{max}\)} \) é a velocidade no eixo do conduto, \(\text{\(R\)} \) e o raio do conduto e \(\text{\(r\)} \) é um raio genérico para o qual a velocidade \(\text{\(v\)} \) assume um determinado valor qualquer. Nesse regime de escoamento a relação entre a velocidade média \(\text{\(V_m\)} \) e a velocidade máxima \(\text{\(V_{max}\)} \) é igual a \(\frac{\text{\(V_m\)}}{\text{\(V_{max}\)}} = 0,5 \).

No escoamento turbulento de um fluido em condutos circulares, o diagrama de velocidades e representado pela equação, \(\frac{\text{\(V\)}}{\text{\(V_{max}\)}} = \left(1 - \left(\frac{\text{\(r\)}}{\text{\(R\)}}\right)^{1/7}\right) \), na qual \(\text{\(V_{max}\)} \) é a velocidade no eixo do conduto, \(\text{\(R\)} \) e o raio do conduto e \(\text{\(r\)} \) é um raio genérico para o qual a velocidade \(\text{\(v\)} \) assume um determinado valor qualquer. Nesse regime de escoamento a relação entre a velocidade média \(\text{\(V_m\)} \) e a velocidade máxima \(\text{\(V_{max}\)} \) é igual a \(\frac{\text{\(V_m\)}}{\text{\(V_{max}\)}} = 49/60 \).

3.4.4 Descarga em massa

Descarga em massa é a massa \(\text{\(M\)} \) de fluido que escoa através de uma seção em um intervalo de tempo unitário.

\[
\frac{\text{\(Q_m\)}}{= \frac{\text{\(M\)}}{\text{\(t\)}} \tag{3.10} \]

Mas, massa específica é:

\[
\rho = \frac{\text{\(M\)}}{\text{\(Vol\)}} \text{ ou } M = \rho \text{\(Vol\)} \tag{3.11} \]

\[
\frac{\text{\(Q_m\)}}{= \frac{\rho \text{\(Vol\)}}{\text{\(t\)}} = \rho \text{\(Q\)} \tag{3.12} \]

3.4.5 Descarga em peso

Descarga em peso é a peso de fluido que escoa através de uma seção em um intervalo de tempo unitário.
\[Q_g = \frac{Peso}{t} \]
(3.13)

Mas, peso específica é:
\[\gamma = \frac{Peso}{Vol} \text{ ou } Peso = \gamma Vol \]
(3.14)

\[Q_g = \frac{\gamma Vol}{t} = \gamma Q \]
(3.15)

3.5 Escoamento unidimensional, bidimensional, e tridimensional

O escoamento é denominado \textit{unidimensional} quando uma única coordenada é suficiente para descrever as propriedades do fluido. Para que isso aconteça, é necessário que as propriedades sejam constantes em cada seção. Por exemplo, figura 3.6, a velocidade matem-se constante em qualquer posição de uma determinada seção, variando somente de uma seção (A1) para outra (A2), ou seja, varia somente ao longo da coordenada (x).

![Figura 3.6](image)

 Já no escoamento \textit{bidimensional}, por exemplo, a variação da velocidade é função das duas coordenadas (x) e (y), figura 3.7.
No escoamento tridimensional, por exemplo, a velocidade varia nos planos (x), (y), e (z), figura 3.8.

3.6 Volume de controle

Volume de controle é um volume fixo arbitrário, no qual se estuda as partículas que passam por ele. (Formulação Euloriana).

3.7 Superfície do volume de controle

Superfície do volume de controle é a superfície que envolve o volume de controle.

3.8 Equação da continuidade

Suponha um escoamento genérico através de um volume de controle (Vc), figura 3.9. Com base na figura anuncia-se a equação da continuidade:
\[Qm1 - Qm2 = \frac{\Delta M}{\Delta t} \]

(3.16)

Na qual:

\(Qm1 \) = descarga fluida em massa que entra no volume de controle;

\(Qm2 \) = descarga fluida em massa que sai do volume de controle;

\(\Delta M \) = massa acumulada do fluido no volume de controle;

\(\Delta t \) = intervalo de tempo considerado.

Figura 3.9

Descarga que entra \((Qm1)\):

\[d(Qm1) = \rho \vec{V}_1 \cdot d(\vec{A}_1) \Rightarrow Qm1 = \int_{A1} \rho \vec{V}_1 \cdot d(\vec{A}_1) \]

Transformação de grandezas vetoriais para escalares:

\[\vec{V} \cdot \vec{A} = |V||A| \cos \theta \]

Na seção de entrada: \(\theta > 90^\circ, \theta < 270^\circ \) (segundo e terceiro quadrantes), \(\cos \theta = (-) \), então:

\[Qm1 = -\int_{A1} \rho \vec{V}_1 \cdot d(\vec{A}_1) \]

(3.17)

Descarga que sai \((Qm2)\):

\[d(Qm2) = \rho \vec{V}_2 \cdot d(\vec{A}_2) \Rightarrow Qm2 = \int_{A1} \rho \vec{V}_2 \cdot d(\vec{A}_2) \]
Transformação de grandezas vetoriais para escalares:

\[\vec{V} \cdot \vec{A} = |\vec{V}| |\vec{A}| \cos \theta \]

Na seção de saída: \(\theta < 90^0 \), \(\theta > 270^0 \) (primeiro e quarto quadrantes), \(\cos \theta = (+) \), então:

\[
Qm_2 = + \int_{A_2} \rho \cdot \vec{V}_2 \cdot d(A_2)
\]

(3.18)

Massa acumulada no intervalo de tempo considerado:

\[
\int d\vec{V}_c
\]

Num instante \((t)\) tem-se: \(d(M_1) = \rho \cdot d(V_c)\)

Num instante \((t+\Delta t)\) resulta: \(d(M_2) = d(M_1) + \frac{dM_1(\Delta t)}{dt}\)

\[d(M_2) = \rho \cdot d(V_c) + \frac{\partial \rho}{\partial (t)} \cdot \Delta t \cdot d(V_c)\]

Variação de massa:

\[d(M_2) - dM_1 = d(\Delta M) = \frac{\partial \rho}{\partial (t)} \cdot \Delta t \cdot d(V_c)\]

No intervalo de tempo considerado \((\Delta t)\):

\[
\frac{d(\Delta M)}{\Delta t} = \frac{\partial \rho}{\partial (t)} \cdot d(V_c)
\]

Variação total:

\[
\frac{\Delta M}{t} = \int_{V_c} \frac{\partial \rho}{\partial (t)} \cdot d(V_c)
\]

(3.19)

Substituindo as equações (3.17), (3.18), e (3.19) na equação (3.16), tem-se:

\[
- \int_{A_1} \rho \cdot V_1 \cdot d(A_1) - \int_{A_2} \rho \cdot V_2 \cdot d(A_2) = \int_{V_c} \frac{\partial \rho}{\partial (t)} \cdot d(V_c)
\]

ou

\[
- \int_{A_1} \rho \cdot V_1 \cdot d(A_1) - \int_{A_2} \rho \cdot V_2 \cdot d(A_2) = \int_{V_c} \frac{\partial \rho}{\partial (t)} \cdot d(V_c)
\]

(3.20)
\[\int_A \rho \vec{V} \cdot d(A) + \int_{V_c} \frac{\partial (\rho)}{\partial (t)} d(V_c) = 0 \quad \text{[Equação da continuidade]} \quad (3.21)\]

3.8.1 Equação da continuidade para fluidos incompressíveis

Para fluidos incompressíveis a massa específica \((\rho) \) mantém-se constante, portanto:

\[\frac{\partial (\rho)}{\partial (t)} = 0, \text{ e a equação da continuidade fica simplificada:} \]

\[\int_A \rho \vec{V} \cdot d(A) = 0 \quad (3.22)\]

3.8.2 Equação da continuidade para fluidos em escoamento permanente

Para fluidos em escoamento permanente não há variação da massa específica no decorrer do tempo considerado, portanto:

\[\frac{\partial (\rho)}{\partial (t)} = 0, \text{ e a equação da continuidade fica simplificada:} \]

\[\int_A \rho \vec{V} \cdot d(A) = 0 \quad (3.23)\]

As equações (3.22) e (3.23) mostram que nos casos especificados não há variação da massa fluida no interior do volume de controle no intervalo de tempo considerado. Para isto ocorrer a descarga em massa fluida que entra pela superfície do volume de controle deve ser exatamente igual à descarga em massa fluida que sai pela superfície do volume de controle, ou seja:

\[\sum (Qm_e) = \sum (Qm_s) \quad (3.24)\]

Mas da equação (3.12) tem-se que:

\[Qm = \rho . Q \]

\[\sum (\rho . Q_e) = \sum (\rho . Q_s) \quad (3.25)\]

Ou, uma vez que a massa específica não varia:
\[\sum(Q_i) = \sum(Q_i) \] (3.26)

EXEMPLO: Na figura 3.10, tem-se que:

\[Q_1 = Q_2 + Q_3 \]

![Figura 3.10](image)

3.9 Exercícios

3.1. Uma torneira enche de água um tanque, cuja capacidade é de 6.000 litros, em 1 hora e 40 minutos. Determinar a vazão em volume, em massa, e em peso em unidade (SI).

Dados: \(\rho_{H_2O} = 1000 \text{ kg/m}^3 \), \(g = 10 \text{ m/s}^2 \).

R.: \(Q = 10^{-3} \text{ m}^3/\text{s}; Q_m = 1 \text{ kg/s}; Q_G = 10 \text{ N/s} \).

3.2. No tubo da figura, determinar a vazão em volume, em massa, em peso e a velocidade média da seção (2), sabendo que o fluido é água e que \(A_1 = 10 \text{ cm}^2 \) e \(A_2 = 5 \text{ cm}^2 \).

Dados: \(\rho_{H_2O} = 1000 \text{ kg/m}^3 \), \(g = 10 \text{ m/s}^2 \).

R.: \(Q = 1 \text{ L/s}; Q_m = 1 \text{ kg/s}; Q_G = 10 \text{ N/s}; V_2 = 2 \text{ m/s} \).
3.3. O ar escoa num tubo convergente. A área da maior seção do tubo é 20 cm² e a da menor é 10 cm². A massa específica do ar na seção (1) vale 1,2 kg/m³, e na seção (2) é de 0,9 kg/m³. Para um valor de velocidade na seção (1) de 10 m/s, determinar as vazões em massa, em peso e a velocidade média na seção (2). [R.: Q₁ = 0,02 m³/s; Q₂ = 0,0267 m³/s; Qm = 2,4x10⁻² kg/s; QG = 0,24 N/s; V₂ = 26,7m/s].

3.4. Um tubo admite água (ρ=1000 kg/m³) num reservatório com uma vazão de 20 L/s. No mesmo reservatório é injetado óleo (ρ=800 kg/m³) por outro tubo com uma vazão de 10 L/s. A mistura homogênea formada é descarregada por um tubo cuja seção tem uma área de 30 cm². Determinar a massa específica da mistura no tubo de descarga e a velocidade da mesma. [R.: ρ₃ = 933 kg/m³; V₃ = 10 m/s].

3.5. Água é descarregada de um tanque cúbico de 5m de aresta através de um tubo de 5 cm de diâmetro. A vazão no tubo é de 10 L/s. Determinar a velocidade de descida da superfície livre da água do tanque e, supondo desprezível a variação da vazão, determinar quanto tempo o nível da água levará para descer 20 cm. [R.: 4x10⁻⁴ m/s; t = 500s].

3.6. Os reservatórios da figura são cúbicos. São enchidos pelos tubos, respectivamente, em 100 s e 500 s. Determinar a velocidade da água na seção (A), sabendo que o diâmetro do conduto nessa seção é 1m. [R.: VA = 4,13 m/s].
3.7. A água escoa por um conduto que possui dois ramais em derivação. O diâmetro do conduto principal vale 15,0 cm e os das derivações são 2,5 cm e 5,0 cm, respectivamente.

O perfil das velocidades no conduto principal é dado por: \(V = V_{\text{max}(1)} \left[1 - \left(\frac{r}{R_{(1)}} \right)^2 \right] \), e nas derivações por: \(V = V_{\text{max}(2,3)} \left[1 - \left(\frac{r}{R_{(2,3)}} \right)^{1/7} \right] \). Se \(V_{\text{max}(1)} = 0,02 \text{ m/s} \), e \(V_{\text{max}(2)} = 0,13 \text{ m/s} \), determinar a velocidade média no tubo de 5,0 cm de diâmetro. Dado: \(R_{(1)} \) = raio da seção (1). [R.: \(V_3 = 0,064 \text{ m/s} \)].

3.8. No sistema da figura, tem-se um único fluido incompressível de viscosidade cinemática (\(\nu = 10^{-4} \text{ m}^2/\text{s} \)) e massa específica (\(\rho = 1000 \text{ kg/m}^3 \)). Pede-se:

a) Qual é o valor do número de Reynolds nas seções (1) e (4)?

b) Qual é o valor da velocidade média na seção (2) em (m/s)?

c) Qual é o valor da vazão em volume nas seções (1) e (4) em (l/s)?
d) Qual é o valor da vazão em volume na derivação e qual é o sentido do escoamento?

e) Qual é a descarga em peso na seção (0)/

f) Qual é o valor da velocidade na posição à 1 cm de distância da parede do tubo (4)/

g) Qual é o valor da tensão de cisalhamento na parede do conduto na seção (2)?

[R.: a) \(\text{Re}_1 = 3.430 \); \(\text{Re}_4 = 2000 \); b) \(\text{Vm}_2 = 5 \text{ m/s} \); c) \(Q_1 = 18,9 \text{ L/s} \); \(Q_4 = 7,8 \text{ L/s} \); d) \(Q_{\text{der.}} = 38,8 \text{ L/s} \) (para fora); e) \(Q_{G0} = 199 \text{ n/S} \); f) \(V = 5,12 \text{ m/s} \); g) \(\tau = 66,6 \text{ N/m}^2 \).
CAPÍTULO 4 – EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE

4.1 Introdução

Baseando-se no princípio de que a energia não pode ser criada nem destruída, mas apenas transformada, é possível desenvolver uma equação que permitirá fazer o balanço das energias, da mesma forma como foi feito para as massas, ao deduzir a equação da continuidade.

A equação que permite tal balanço é denominada equação da energia a qual permitirá resolver uma variedade de problemas práticos como, por exemplo: determinação da potência de máquinas hidráulicas, determinação de perdas em escoamento, transformação de energia, desenvolvimento de medidores de fluidos etc.

4.2 Modalidades de energia associadas a um fluido

Numa quantidade de massa fluida existirão modalidades de energia dependentes de sua posição em relação ao um referencial, de seu movimento, e da pressão atuante.

4.2.1 Energia potencial de posição (Ep)

É a modalidade de energia devida à posição da massa fluida no campo da gravidade em relação a um plano horizontal de referência (PHR).

Seja, por exemplo, uma quantidade de fluido de peso (G), em que o seu centro de gravidade está a uma cota (Z) em relação a um (PHR), figura 4.1.

![Figura 4.1](image)

Uma vez que trabalho (W) é a força necessária para deslocar a quantidade de fluido de peso (G) do referencial até uma distância (Z), então:

\[W = G \cdot Z = M \cdot g \cdot Z \] 4.1
Uma vez que energia é a capacidade de realizar trabalho então tem-se:

\[E_p = W \] \hspace{1cm} (4.2)

Ou

\[E_p = M.g.Z \] \hspace{1cm} (4.3)

4.2.2 Energia potencial de pressão (Epr)

Considere na figura 4.2 um fluido líquido escoando sob pressão num conduto. Ao instalar um piezômetro na parede superior do conduto uma coluna de fluido subirá uma altura (y). A magnitude da altura (y) dependerá da pressão interna do tubo. Neste caso o trabalho será realizado pela referida pressão, ou admitindo que a pressão seja uniforme na seção, então a força aplicada pelo fluido na interface de área (A) será:

\[F = p.A \] \hspace{1cm} (4.4)

![Figura 4.2](image)

Num determinado intervalo de tempo (dt), o fluido irá se deslocar de um (dx), sob a ação da força (F), realizando um trabalho:

\[dW = F.(dx) = p.A.(dx) = p.(dVol) = d(E_{pr}) \] \hspace{1cm} (4.5)

A energia de pressão referente à toda área (A) será:

\[E_{pr} = \int_{Vol} p.d(Vol) \] \hspace{1cm} (4.6)
Ou,

\[E_{pr} = p.Vol \] \hspace{1cm} 4.7

Mas,

\[Vol = \frac{M}{\rho} \] \hspace{1cm} 4.8

\[E_{pr} = p.\frac{M}{\rho} \] \hspace{1cm} 4.9

4.2.3 Energia cinética (Em)

É a modalidade de energia devido ao movimento do fluido. Seja, figura 4.3, uma massa (M) fluida em movimento com uma velocidade (V). Neste caso a energia cinética é dada por:

\[Ec = \frac{M.V^2}{2} \] \hspace{1cm} 4.10

![Figura 4.3](image)

Figura 4.3

4.2.4 Energia total

A energia total, não considerando as energias térmicas, é dada por:

\[E = M.g.Z + p.\frac{M}{\rho} + \frac{M.V^2}{2} \] \hspace{1cm} 4.11

Dividindo a equação (4.11) pelo peso (G=M.g), fica:

\[E_g = \frac{E}{M.g} = Z + p.\frac{M}{\rho.M.g} + \frac{M.V^2}{2.M.g} \] \hspace{1cm} 4.12
Na qual:

\[E_G = \text{energia por unidade de peso da massa fluida.} \]

\[E_G = Z + \frac{p}{\rho g} + \frac{V^2}{2g} \] \hspace{1cm} 4.13

Mas,

\[p = \gamma y \] \hspace{1cm} 4.14

\[\gamma = \rho g \] \hspace{1cm} 4.15

Das equações 4.13, 4.14, e 4.15, resulta:

\[E_G = Z + y + \frac{V^2}{2g} \] \hspace{1cm} 4.16

4.3 Equação de Bernoulli

Na figura 4.4, tem-se duas seções de áreas diferentes (1) e (2) de um tubo através das quais escoa um fluido sob pressão.

![Diagrama de Bernoulli](image)

Figura 4.4
Considerando as hipóteses simplificadores seguintes:

1ª) Regime permanente;

2ª) Sem máquina posicionada entre as seções (1) e (2);

3ª) Sem perdas por atrito no escoamento do fluido ou fluido ideal;

4ª) Propriedades uniformes nas seções;

5ª) Fluido incompressível;

6ª) Sem trocas de calor.

Tem-se que:

\[E_{G1} = E_{G2} \] \hspace{1cm} 4.17

Ou,

\[Z_1 + y_1 + \frac{V_1^2}{2g} = Z_2 + y_2 + \frac{V_2^2}{2g} \] \hspace{1cm} (Equação de Bernoulli) \hspace{1cm} 4.18

4.4 Equação de energia e máquinas

Máquina é qualquer dispositivo mecânico que forneça ou retire energia do fluido, na forma de trabalho. As que fornecem energia ao fluido serão denominadas "bombas", e as que retiram energia do fluido, "turbinas".

A energia total por unidade de peso nas seções (1) e (2) serão \((E_{G1})\) e \((E_{G2})\), respectivamente, e a energia referente à máquina será \((E_{MQ})\), então a equação da energia fica:
\[E_{G1} + E_{MQ} = E_{G2} \]

No caso das bombas, o valor de \((E_{MQ})\) será positivo e no caso das turbinas o valor de \((E_{MQ})\) será negativo.

Bomba:

\[E_{MQ} = E_B \]
\[E_{G1} + E_B = E_{G2} \]

Turbina:

\[E_{MQ} = E_T \]
\[E_{G1} - E_T = E_{G2} \]

4.5 Potência da máquina e rendimento

Potência \((P)\) é o trabalho por unidade de tempo. Uma vez que trabalho é uma energia \((E_M=\text{energia referente à máquina})\), pode-se generalizar definindo potência como sendo a energia por unidade de tempo \((t)\), assim:

\[P = \frac{E_M}{t} \]

Dividindo e multiplicando a equação (4.24) pelo peso \((G)\) da massa fluida deslocada pela máquina fica:

\[P = \frac{E_M \cdot G}{t} \]

Ou,

\[P = E_{MG} \cdot Q_G \]

Mas,

\[Q_G = \gamma \cdot Q \]
\[P = E_{MG} \cdot \gamma \cdot Q \quad \text{4.28} \]

Bomba:

Denominando:

\[E_{MG} = H_B = \text{carga recebido pelo fluido, fornecida pela bomba, tem-se:} \]

\[P_{RF} = \gamma \cdot Q \cdot H_B \quad \text{4.29} \]

Turbina:

Denominando:

\[E_{MG} = H_T = \text{carga retirada do fluido pela turbina tem-se:} \]

\[P_{FT} = \gamma \cdot Q \cdot H_T \quad \text{4.30} \]

4.5.1 Rendimento da máquina

No caso de transmissão de potência, sempre existem perdas, então a potência recebida ou cedida pelo fluido será sempre diferente da potência da máquina, que é definida como sendo a potência disponível no seu eixo.

Bomba:

A potência de uma bomba será indicada por \(P_B \), e a potência recebida pelo fluido ao passar pela bomba por \(P_{RF} \) e é ilustrada esquematicamente na figura 4.6. Como ocorrerão perdas hidráulicas no interior da bomba, então \(P_{RF} < P_B \). Neste caso o rendimento da bomba é a relação entre a potência recebida pelo fluido e a potência da bomba, ou seja:

\[\eta_B = \frac{P_{RF}}{P_B} < 1,0 \quad \text{4.31} \]
Das equações 4.29, e 4.31, resulta:

\[\eta_B = \frac{\gamma Q H_B}{P_B} \quad 4.32 \]

Ou,

\[P_B = \frac{\gamma Q H_B}{\eta_B} \quad 4.33 \]

Turbina:

A potência de uma turbina será indicada por \(P_T \), e a potência cedida pelo fluido para a turbina por \(P_{FT} \) e é ilustrada esquematicamente na figura 4.7. Como ocorrerão perdas hidráulicas no interior da turbina, então \(P_{FT} > P_T \). Neste caso o rendimento da turbina é a relação entre a potência da turbina e a potência fornecida pelo fluido para a turbina, ou seja:

\[\eta_T = \frac{P_T}{P_{FT}} < 1,0 \quad 4.34 \]
Das equações 4.30, e 4.34, resulta:

\[\eta_T = \frac{P_T}{\gamma Q H_T} \] \hspace{1cm} 4.35

Ou,

\[P_T = \gamma Q H_T \eta_T \] \hspace{1cm} 4.36

Unidades de Potência:

As unidades de potência são dadas por unidade de trabalho por unidade de tempo.

SI: N.m/s = J/s = W (watt); (1 kg.m/s = 9,8 W).

MK*S: kgf.m/s = 9,81.kg.m/s

Outras unidades são o CV (cavalo-vapor) e o HP (horse power);

1 CV = 75 kg.m/s = 735 W

1 HP = 1,010 CV

1 CV = 0,986 HP
4.6 Equação da energia para fluido real

Considere agora as hipóteses de regime permanente, fluido incompressível, propriedades uniformes na seção e sem trocas de calor provocadas propostalmente. Neste item será retirada a hipótese de fluido ideal; logo, serão consideradas as perdas de energia provocadas pelo atrito e choques entre as partículas, assim, o fluido passa a ser considerado real.

Da equação de Bernoulli, aplicada para fluidos ideais, figura 4.4, as energias por unidade de peso do fluido nas seções (1) e (2) são iguais, \((E_{G1} = E_{G2})\). No entanto, no escoamento de fluidos reais haverá uma dissipação da energia entre as seções (1) e (2), de modo que \((E_{G1} > E_{G2})\). A diferença entre a \((E_{G1})\) e a \((E_{G2})\) será denominada de perda de carga, figura 4.8.

\[E_{G1} - E_{G2} = \Delta E_{(1-2)}\] \hspace{1cm} 4.37

Na qual:

\(\Delta E_{(1-2)} =\) perda de carga ou energia perdida por unidade de peso do fluido entre as seções (1) e (2).

Figura 4.8
\[(Z_1 + y_1 + \frac{V_1^2}{2g}) - (Z_2 + y_2 + \frac{V_2^2}{2g}) = \Delta E_{(1-2)}\]

4.7 Exercícios

4.1. Determinar a velocidade média e a pressão na seção (2) de uma tubulação circular e horizontal, pela qual escoa um fluido incompressível e ideal em regime permanente. Dados: \(D_1 = 15\; \text{cm}\); \(D_2 = 10\; \text{cm}\); \(p_1 = 50.000\; \text{N/m}^2\); \(V_1 = 3\; \text{m/s}\); \(\gamma_{\text{fluido}}=10.000\; \text{N/m}^3\); \(g = 10\; \text{m/s}^2\). [R.: \(V_2=6,75\; \text{m/s}\); \(p_2 = 31.719\; \text{N/m}^2\)].

4.2. Água escoa em regime permanente no Venturi da figura. No trecho considerado, supõem-se as perdas por atrito desprezíveis e as propriedades da água uniformes. A seção (1) tem uma área de 20 cm\(^2\) enquanto a seção (2) é de 10 cm\(^2\). Um manômetro cujo fluido manométrico é mercúrio (\(\gamma_{\text{Hg}}=136.000\; \text{N/m}^3\)) é ligado entre as seções (1) e (2) e indica o desnível mostrado na figura. Pede-se a vazão da água que escoa pelo Venturi. Dado: (\(\gamma_{\text{H}_2\text{O}}=10.000\; \text{N/m}^3\)). [R.: \(Q=5.8\; \text{L/s}\)].
4.3. Calcule a vazão de gasolina (densidade relativa 0,82) através dos tubos da figura.
Dado: $\rho_{Hg} = 13,6; \ D_1= 0,30m; \ D_2=0,15m$. \([R.: Q=0,22 \ m^3/s] \).

4.4. A figura indica o escoamento de água em um canal retangular de 3,0 m de largura. Desprezando todas as perdas de energia, determinar as possíveis profundidades do fluxo na seção (B). \([R.: y_{B1} = 0,64m; \ y_{B2} = 4,66m] \).

4.5. Na figura tem-se um sifão que veicula água do reservatório para a posição (C), jato livre. Desprezando-se totalmente as perdas de energia, qual será a velocidade da água que sai por (C)? Quais são as pressões da água no tubo, nos pontos (A) e (B)?. Dados: $g=9,81m/s^2; \ \gamma_{H2O} = 10.000 \ N/m^3$. \([R.: V_c = 6,86 \ m/s; \ P_A=-2,4 \ N/cm^2; \ P_B=-3,6 \ N/cm^2] \).
4.6. Uma bomba retira água de um reservatório por um conduto de sucção de 0,20 m de diâmetro e descarrega através de um conduto de 0,15 m de diâmetro, no qual a velocidade média é de 3,66 m/s. A pressão no ponto (A) é de (-0,35 N/cm². O conduto de diâmetro 0,15 m descarrega horizontalmente no ar. Até que altura (H), acima de (B), poderá a água ser elevada, estando (B) 1,80m acima de (A) e sendo de 20 CV a potência aplicada pela bomba? Admitir que a bomba funciona com um rendimento de 70% e que as perdas de energia por atrito entre (A) e (C) totalizem 3,05m. [R.: H=10,6 m].

4.7. Um conduto de 0,60 m de diâmetro alimenta uma turbina que descarrega água através de outro tubo de 0,60 m de diâmetro para o canal de fuga (B). A perda de carga entre o reservatório (A) e o ponto (1) é 5 vezes a energia cinética no conduto, e a perda
de carga entre o ponto (2) e o canal (B) é 0,2 vezes a carga cinética no tubo. Sendo a vazão igual a 0,71 m³/s, determinar a potência fornecida à turbina pela água, e as pressões nos pontos (1) e (2). Dados: rendimento da turbina 70%; aceleração da gravidade g = 9,81 m/s²; peso específico da água γ_{H₂O} = 10.000 N/m³. [R.: PT=393 CV; P₁/γ = 54,48 mca; P₂/γ = -4,86 mca].

4.8. Dado o dispositivo da figura, calcular a vazão de água através do tubo. Dados: P₂=2000 kgf/m²; A₁ = 10⁻² m²; g = 10 m/s². [R.: Q = 20 L/s].

4.9. Na instalação mostrada na figura, são conhecidos: Q = 10 L/s; A = 0,01 m²; P₀=0,5kgf/cm²; g = 10 m/s²; P = 0,7 kgf/cm²; Δh_{CD}=7,5 mca, rendimento da máquina 80%. Determinar:
a) o sentido de escoamento do fluxo;
b) a perda de carga entre (A) e (B);
c) o tipo de máquina (bomba ou turbina);
d) a potência da máquina;
e) a linha piezométrica entre (A) e (D), e os valores das cotas piezométricas nos pontos (A), (B), (C), e (D).

[R.: a) de (B) para (C); b) $\Delta h_{AB}=2,95$ mca; c) Bomba, $P_B = 0,41$ CV; d) $P/A/\gamma = 10,0$ mca, $P_B/\gamma = 7,0$ mca].

4.10. Calcular a potência do jato de um fluido descarregando no ambiente por um bocal. Dados: $A_j = 4,9x10^{-4}$ m2; $V_j = 10$ m/s; $\gamma_{H2O} = 10.000$ N/m3; $g = 10$ m/s2. [R.: 245 N.m/s].
CAPÍTULO 5 – ANÁLISE DIMENSIONAL

5.1 Introdução

Análise dimensional é a matemática das dimensões das grandezas. Como aplicações da análise dimensional podem-se ser citadas: 1) Facilita a conversão de sistemas de unidades; 2) Desenvolvimento de equações.

5.2 Grandezas

As grandezas são classificadas em grandezas básicas e grandezas dependentes.

5.2.1 Básicas

As grandezas básicas podem ser apresentadas em dois grupos:

Grupo 1: Força (F), Comprimento (L), Tempo (T).

Grupo 2: Massa (M), Comprimento (L), Tempo (T).

5.2.2 Dependentes

As grandezas dependentes são aquelas que podem ser reduzidas utilizando as dimensões básicas.

Exemplos: Velocidade (V), Peso específico (γ).

\[V = \frac{L}{T} = \frac{\text{Comprimento}}{\text{Tempo}} \quad (5.1) \]

\[\gamma = \frac{F}{L^3} = \frac{\text{Força}}{(\text{Comprimento})^3} \quad (5.2) \]

5.3 Representações das relações físicas

Apresentam-se duas representações das relações físicas: dimensional e adimensional.

5.3.1 Representação dimensional

Na representação dimensional, o resultado final das simplificações das dimensões básicas envolvidas é uma dimensão básica.

Exemplo: Produto a velocidade (V) pelo tempo (T).
\[V \cdot T = \left[\frac{|L|}{|T|} \right] \cdot |T| = |L| \] (5.3)

5.3.2 Representação adimensional

Na representação adimensional, o resultado final das simplificações das dimensões básicas envolvidas é igual a 1 (um).

Exemplo: Rugosidade relativa \(k = \left(\frac{e}{D} \right) \) de um conduto.

\[
 k = \frac{e}{D} = \frac{|L|}{|L|} = 1
\] (5.4)

Na qual:

\(e \) = tamanho das protuberâncias superficiais internas do conduto;

\(D \) = diâmetro do conduto.

5.4 Desenvolvimento de equações. Teorema dos \((\pi_s)\) de Buckingham

Quando no fenômeno físico estiverem envolvidas \((n)\) variáveis \((G_1, G_2, \ldots G_n)\), e se esse fenômeno físico puder ser descrito por uma função \([f (G_1, G_2, \ldots G_n) = 0]\), então ele também poder-se-á ser descrito por uma função adimensional \([\phi (\pi_1, \pi_2, \ldots, \pi_n) = 0]\), de \((n-r)\) grupos adimensionais independentes, onde \((r)\) é o número de dimensões básicas. Cada \((\pi)\) é um grupamento adimensional.

5.4.1 Passos para o desenvolvimento de equações

Para facilitar o entendimento considere o exemplo ilustrado através da figura 5.1. Uma esfera, de diâmetro \((D)\), submersa num fluido em movimento com uma velocidade \((V)\) é arrastada por uma força \((F_a)\). Considere o fluido incompressível de massa específica \((\rho)\) e viscosidade dinâmica ou absoluta \((\mu)\). Desenvolva uma equação da força de arraste \((F_a)\) em função das demais variáveis envolvidas.
1º Passo:

Identificar as variáveis envolvidas no fenômeno físico e exprimi-las matematicamente por meio de uma função \(f (G1, G2, ... Gn) = 0 \);

Exemplo, figura 5.1:

\[
 f (F_a, V, D, \rho, \mu) = 0
\]

2º Passo:

Exprimir cada variável envolvida em termos das dimensões básicas \((F,L,T)\) ou \((M,L,T)\);

Exemplo, figura 5.1:

\[
 F_a = F, \quad D = L, \quad V = \frac{L}{T}, \quad \rho = \frac{F.T^2}{L^4}, \quad \mu = \frac{F.T}{L^2}
\]

3º Passo:

Determinar o número de grupos adimensionais \((\pi)\) igual a \((J)\);

\[
 J = n - r
\]

Na qual:

\(J \) = número de grupos adimensionais \((\pi)\);

\(n \) = número de variáveis envolvidas;
r = número de dimensões básicas necessárias.

Exemplo, figura 5.1:

\[J = 5 - 3) = 2 \pi s \] (Dois grupos adimensionais).

4º Passo:

Escolher as variáveis repetitivas com expoentes desconhecidos, formando os \((\pi_s)\).

Cada \((\pi)\) será o produto das variáveis repetitivas por mais uma variável com expoente conhecido e igual à (1). As variáveis repetitivas formam o denominado sistema pro-básico, devendo uma delas representar uma dimensão (L), a outra uma propriedade do fluido \((\rho=massa específica é a preferida), e a terceira uma grandeza cinemática (V=velocidade deve ser a preferida).

Exemplo, figura 5.1:

Pro-básico: \((D, \rho, V,) \rightarrow \text{variáveis repetitivas.}\)

\[
\begin{align*}
\pi_1 &= D^{a_1} \cdot \rho^{b_1} \cdot V^{c_1} \cdot F^{d_1} \\
\pi_2 &= D^{a_2} \cdot \rho^{b_2} \cdot V^{c_2} \cdot \mu^{d_2}
\end{align*}
\]

Ou,

\[
\begin{align*}
\pi_1 &= \left| L^{a_1} \right| \left| \frac{F \cdot T \cdot L}{L^3} \right|^{b_1} \left| \frac{L}{T} \right|^{c_1} \left| F \right|^{d_1} \\
\pi_2 &= \left| L^{a_2} \right| \left| \frac{F \cdot T \cdot L}{L^3} \right|^{b_2} \left| \frac{L}{T} \right|^{c_2} \left| \frac{F \cdot T}{L^2} \right|^{d_2}
\end{align*}
\]

5º Passo:

Para cada \((\pi)\), determinar os expoentes desconhecidos utilizando a lei da homogeneidade;

Exemplo, figura 5.1:

\[
\begin{align*}
F \to 0 &= b_1 + 1 \\
L \to 0 &= a_1 - 4.b_1 + c_1 \\
T \to 0 &= 2.b_1 - 1.c_1
\end{align*}
\]

Resolvendo o sistema, fica:

\[
\begin{align*}
a_1 &= -2 \\
b_1 &= -1 \\
c_1 &= -2
\end{align*}
\]
FENÔMENOS DE TRANSPORTE – CAPÍTULO 5 – PROFESSORES: CAMILA - EVALDO – LAURA - VICTOR

Resolvendo o sistema, fica:

\[F \rightarrow 0 = b_2 + 1 \]
\[L \rightarrow 0 = a_2 - 4.b_2 + c_2 -2 \]
\[T \rightarrow 0 = 2.b_2 - 1.c_2 +1 \]

Para (\(\pi_2\)):

\[A_2 = -1 \]
\[b_2 = -1 \]
\[c_2 = -1 \]

6º Passo:

Substituir os expoentes algébricos pelos numéricos calculados e montar os grupos adimensionais;

Exemplo, figura 5.1:

\[\pi_1 = D^{-2}.\rho^{-1}.V^{-2}.Fa^1 = \frac{Fa}{\rho V^2 D^2} \]

\[\pi_2 = D^{-1}.\rho^{-1}.V^{-1}.\mu^1 = \frac{\mu}{\rho V D} = \frac{1}{Re y} \]

Na qual:

Rey = número de Reynolds.

7º Passo:

Montar a função adimensional;V

Exemplo, figura 5.1:

\[f\left(\frac{Fa}{\rho V^2 D^2}, \frac{\mu}{\rho V D}\right) = 0 \]

Ou,

\[\frac{F}{\rho V^2 D^2} = f_1\left(\frac{\mu}{\rho V D}\right) \]

\[Fa = \rho V^2 D^2 \left[f_1\left(\frac{\mu}{\rho V D}\right) \right] \text{ ou } \]

\[Fa = \rho V^2 D^2 \left[f_2\left(\frac{\rho V D}{\mu}\right) \right] \]

\[Fa = \rho V^2 D^2 \left[f_3\left(Re y\right) \right] \]
5.5 Grupos adimensionais importantes na mecânica dos fluidos

Número de Euler \(= \frac{p}{\rho V^2} \), [sempre que estiver presente a pressão (p)].

Número de Reynolds \(= \frac{\rho V D}{\mu} \), [sempre que estiver presente o coeficiente de viscosidade dinâmica ou absoluta (\(\mu \)), ou o coeficiente de viscosidade cinemática (\(\nu \))].

Número de Weber \(= \frac{\rho L V^2}{\sigma} \), [sempre que estiver presente a tensão superficial (\(\sigma \))].

Número de Mach \(= \frac{V}{C} \), [sempre que estiver presente a velocidade do som (C)].

Número de Froude \(= \frac{V^2}{Lg} \), [sempre que estiver a aceleração da gravidade (g)].

5.6 Exercícios

5.1. Admite-se que a força (F) devido ao vento sobre um edifício alto, depende da massa específica do ar (\(\rho \)), da viscosidade do ar (\(\mu \)), da velocidade do vento (V), da largura (b), e da altura do edifício (h). Determinar os números adimensionais em função dos quais pode ser expressa a força do vento. \([R.:\ \frac{F}{\rho V^2 b}, \text{Rey}, \frac{h}{b}]\).

5.2. De que grupos adimensionais a força de arrasto (F) sobre uma asa de avião depende, sabendo-se que o arrasto é afetado pelo tamanho da asa (L), pelo ângulo de ataque (\(\alpha \)), pela velocidade do vôo (V), pela viscosidade do ar (\(\mu \)), pela massa específica do ar (\(\rho \)), e pela velocidade das ondas de compressão do ar (C).

\([R.:\ \frac{F}{\rho V^2 L}, \text{Rey}, \frac{V}{C}, \alpha]\).

5.3. Estudar dimensionalmente a perda de carga (pressão) de um fluido incompressível e viscoso, através de uma tubulação reta de comprimento (L). As variáveis conhecidas que intervêm do fenômeno são: perda de carga (\(\Delta p \)), a velocidade média (V), a viscosidade dinâmica (\(\mu \)) do fluido, o diâmetro da tubulação (D), o comprimento do trecho (L), a massa específica (\(\rho \)) do fluido, e a rugosidade interna da tubulação (e). \([R.:\ \frac{\Delta p}{\rho V^2}, \text{Rey}, \frac{L}{D}, \frac{e}{D}]\).
5.4. A velocidade do som (C) em um gás depende da pressão (p) e da massa específica (ρ). Qual a relação de dependência existente? \[R.: \ C = \sqrt{\frac{p}{\rho}}. \]

5.5. Admite-se que a sobre elevação (h) do nível de um lago, devido ao vento depende da profundidade média (D) do lago, de sua largura (L), do peso específico (γ) da água, e da tensão tangencial (τ) devido ao vento. Desenvolva uma equação geral que exprime (h) em função das demais variáveis. \[R.: \ \frac{h}{D} = f\left(\frac{L}{D}, \frac{\tau}{\gamma.D}\right) \]

5.6. A vazão (Q) que escoa sobre um vertedor retangular de paredes finas, é função da largura (L) da soleira do vertedor, da elevação (H) da água a montante do vertedor, medida acima da soleira (crista) do vertedor, e da aceleração da gravidade (g). Usando a análise dimensional encontre uma fórmula que dê a vazão (Q), em função das demais variáveis. \[R.: \ Q = \sqrt{g.H^{1.5}}. f\left(\frac{L}{H}\right) \]
CAPÍTULO 6 – FENÔMENOS DE TRANSFERÊNCIAS

6.1 Introdução

Os estudos da transferência de calor, de massa e de quantidade de movimento podem ser unificados, uma vez que o processo de transferência é caracterizado pela tendência ao equilíbrio e seguem o mesmo princípio.

Quando uma gota de corante é colocada na água, tem-se uma transferência de massa, de modo que o corante se difunda através da água, atingindo um estado de equilíbrio facilmente detectado visualmente.

Outro exemplo de transferência de massa, neste caso detectado através do olfato, é quando uma pequena quantidade de perfume é borrifada num ambiente. A concentração torna-se mais fraca nas vizinhanças da fonte à medida que o perfume se difunde através do ambiente.

A evolução do calor ao acender uma churrasqueira é sentida nas peles das pessoas próximas, neste caso tem-se o processo de transferência de calor da fonte (churrasqueira) para o ambiente exterior. Portanto, os processos de transferências fazem parte da nossa experiência cotidiana.

6.2 Processos de transferência de calor

Transferência de calor é a energia térmica em movimento devido a uma diferença de temperaturas no espaço. Os processos de transferência de calor ocorrem por: condução, por convecção, e por radiação, figura 6.1.

Figura 6.1
No processo (por condução, figura 6.1A), através de um meio fluido gasoso em repouso, o fluxo de calor ocorre de um ponto de maior temperatura (T1) para um outro de menor temperatura (T2), ou seja, há a transferência de energia das partículas mais energéticas (mais aquecidas) para as menos energéticas (menos aquecidas) num processo de difusão de energia. Portanto, a transferência deve-se às atividades atômicas e moleculares.

No caso do fluido ser líquido o processo de transferência por condução é semelhante ao meio gasoso, com a diferença de que no meio líquido as moléculas estão mais próximas e, portanto, as interações mais fortes e mais freqüentes. Se o meio for um sólido as atividades atômicas ocorrerem por vibrações dos retículos (nós).

No processo (por convecção, figura 6.1B) a transferência de calor predominantemente deve-se à presença de um fluido em movimento sobre uma superfície aquecida, e o sentido do fluxo de calor, também neste caso, deve-se à existência de uma diferença de temperatura entre a placa aquecida e o meio fluido em movimento.

No processo (por radiação, figura 6.1C) a transferência de calor ocorre por ondas eletromagnéticas, portanto, não requer a presença de um meio material, de modo que a transferência por radiação é mais eficiente no vácuo.

6.2.1 Transferência de calor por condução – Lei de Fourier

Considere, na figura 6.2, duas superfícies com temperaturas diferentes (T1) e (T2), com a temperatura (T1) maior que a temperatura (T2). O fluxo térmico, ou taxa de transferência de calor por unidade de área é dado por:

\[
q_x = -K \frac{dT}{dx}
\]

(6.1)

Na qual:

- \(q_x\) = fluxo térmico, ou taxa de transferência de calor por unidade de área, em (W/m²);
- \(K\) = condutividade térmica (uma característica do material; Quadro 1 e 2), em (W/m.K);
- \(dT\) = variação da temperatura em graus Kelvin;
- \(\frac{dT}{dx}\) = gradiente de temperatura na direção normal à superfície considerada.
Para distribuição linear de temperatura tem-se:

\[q_x = -K \frac{(T_2 - T_1)}{L} \]
\[q_x = K \frac{(T_1 - T_2)}{L} \]

A transferência de calor através de uma superfície de área (A) é calculada por:

\[q_s = -K.A. \frac{(T_2 - T_1)}{L} \]
\[q_s = K.A. \frac{(T_1 - T_2)}{L} \]

Nas quais:

A= área da superfície, em (m²);
6.2.2 Transferência de calor por convecção – Lei do resfriamento de Newton

Quando um corpo sólido está em contato com um fluido em movimento, com temperatura diferente da do corpo, o calor é transportado por convecção pelo fluido. Considere na figura 6.3 uma superfície aquecida com uma temperatura (Ts) sobre a qual escoa um fluido com temperatura (T∞).

Figura 6.3

A transferência principal ocorre por convecção, devido à presença do fluido em movimento (movimento macroscópico = advecção). Junto da superfície, para a velocidade (u=0), ocorre a transferência por difusão (movimento molecular aleatório). Portanto, a energia sensível ou térmica interna do fluido (convecção) é composta pela difusão mais a advecção.

Convecção = advecção + difusão = energia sensível

O processo de transferência de calor por convecção pode ainda ser livre (ou natural) e forçada.

No processo livre o movimento dá-se por alteração da densidade do fluido devido à diferença de temperaturas, resultando o empuxo da massa fluida.
No caso da transferência forçada a transferência de calor ocorre quando o escoamento do fluido sobre a placa aquecida é causada por meio externos, por exemplo: vento, ventilador, bombas.

A mudança de fase entre estados líquidos e vapor provoca a troca de calor latente, por exemplos: ebulição, condensação, resultando também o processo de transferência de calor por convecção.

A taxa de transferência de calor, por unidade de área, da placa para o fluido ou do fluido para a placa, pode ser calculada utilizando a lei de resfriamento de Newton dada por:

\[q^* = h(T_s - T_\infty) \quad \text{para} \ (T_s > T_\infty) \] \hspace{1cm} (6.6)

Ou:

\[q^* = h(T_\infty - T_s) \quad \text{para} \ (T_s < T_\infty) \] \hspace{1cm} (6.7)

Nas quais:

\(q^* \) = taxa de transferência de calor por convecção por unidade de área, em (W/m\(^2\));
\(h \) = coeficiente de transferência por convecção, quadro 3, em [W/(m\(^2\).K)];
\(T_\infty \) = temperatura do fluido em movimento, em (K);
\(T_s \) = temperatura da superfície aquecida, em (K).

A transferência de calor total, por convecção através da área (A) da superfície aquecida é calculada por:

\[q = h.A(T_s - T_\infty) \quad \text{para} \ (T_s > T_\infty) \] \hspace{1cm} (6.8)

Ou:

\[q = h.A(T_\infty - T_s) \quad \text{para} \ (T_s < T_\infty) \] \hspace{1cm} (6.9)

Nas quais:

\(q \) = transferência de calor total através da área (A), em (W).
6.2.3 Transferência de calor por radiação – Lei de Stefan-Boltzmann

Radiação térmica é a energia emitida pela matéria que se encontra a uma temperatura diferente de zero. A transferência de calor é devido à propagação de onda eletromagnética, o que pode ocorrer tanto no vácuo total como em um meio qualquer.

O cálculo da transferência de calor por radiação saindo de uma superfície de área \(A \) é feito utilizando a lei de Stefan-Boltzmann dada por:

\[
q = \sigma A T^4
\]

(6.10)

Na qual:

- \(q \) = quantidade de calor transferida por radiação, em \(W \);
- \(\sigma \) = é uma constante que independe da superfície do meio e da temperatura; seu valor é \(5,6697 \times 10^{-8} \frac{W}{m^2.K^4} \);
- \(A \) = área da superfície radiante, em \(m^2 \);
- \(T \) = temperatura absoluta em graus \(K = \text{Kelvin} \).

O emissor ideal, ou corpo negro, é aquele que transmite energia radiante de acordo com a equação (6.10). Todas as demais superfícies emitem menos e a emissão térmica de muitas superfícies (corpos cinzentos) pode ser calculada utilizando a seguinte equação:

\[
q = \varepsilon \sigma A T^4
\]

(6.11)

Na qual:

- \(\varepsilon \) = emissividade da superfície, \(0 \leq \varepsilon \leq 1,0 \).

6.3 Condução unidimensional em regime permanente em parede plana

A situação mais simples e muito utilizada na prática é a transferência de calor por condução unidimensional em regime permanente através de uma parede plana, de material homogêneo e que tem condutividade térmica constante, com cada face mantida a uma temperatura constante e uniforme. Neste caso, a quantidade de calor transferida pelo processo de condução foi mostrada no item (6.2.1) que pode ser calculada utilizando a equação (6.4), que rearranjada resulta:
\[q_x = \frac{(T_1 - T_2)}{L} \frac{1}{K.A} \]

(6.12)

Na qual:

\((T_1 - T_2) \) = diferença de potencial térmico;

\[\frac{L}{K.A} = R \] = resistência térmica.

(6.13)

Das equações (6.12) e (6.13) resulta:

\[q_x = \frac{(T_1 - T_2)}{R} \]

(6.15)

Observe que a resistência térmica \(R \), equação 6.13, é diretamente proporcional à espessura do material \(L \), e inversamente proporcional à sua condutividade térmica \(K \) e à área normal à direção da transferência de calor.

Considere agora uma parede plana composta, em série, conforme figura 6.4. Em regime permanente, a taxa de transferência de calor que entra na face esquerda é a mesma que deixa a face direita. Portanto: \(q_x = \) constante.

Figura 6.6
Então:

\[q_x = \frac{(T_1 - T_2)}{R_1} = \frac{(T_2 - T_3)}{R_2} = \frac{(T_3 - T_4)}{R_3} \] \hspace{1cm} (6.16)

Na qual:

\[R_1 = \frac{L_1}{K_1.A} \quad R_2 = \frac{L_2}{K_2.A} \quad R_3 = \frac{L_3}{K_3.A} \]

Ou da equação (6.16) pode-se escrever:

\[q_x \cdot R_1 = (T_1 - T_2) \]
\[+ \]
\[q_x \cdot R_2 = (T_2 - T_3) \]
\[+ \]
\[q_x \cdot R_3 = (T_3 - T_4) \]

\[q_x \cdot (R_1 + R_2 + R_3) = T_1 - T_2 - T_3 + T_4 \]

\[q_x \cdot (R_1 + R_2 + R_3) = T_1 - T_4 \]

Ou:

\[q_x = \frac{(T_1 - T_4)}{(R_1 + R_2 + R_3)} \] \hspace{1cm} (6.17)

6.4 Exercícios

6.1. Informa-se que a condutividade térmica de uma folha de isolante extrudado rígido é igual a K=0,029 W/(m.K). A diferença de temperaturas medidas entre as superfícies de uma folha com 20 mm de espessura deste material é (T_1-T_2 = 10^0C).

 a) Qual é o fluxo térmico através de uma folha do isolante com 2m x 2m?.

 b) Qual é a taxa de transferência de calor através da folha de isolante?.

[R.: a) 58 W; b) 14,5 W/m²].

6.2. O fluxo térmico através de uma lâmina de madeira, com espessura de 50mm, cujas temperaturas das superfícies são de 40 e 20^0C, foi determinado como de a 49 W/m². Qual é a condutividade térmica da madeira?.

[R.: K = 0,1225 W/(m.K)].

6.3. Uma janela de vidro, com 1m de largura e 2m de altura, tem espessura de 5mm e uma condutividade térmica de K_v = 1,4 W(M.k). Se em um dia de inverno as temperaturas das superfícies interna e externa do vidro são de 15^0C e -20^0C, respectivamente, qual é a
taxa de perda de calor através do vidro?. Para reduzir a perda de calor através da janela, é costume usar janelas de vidro duplo nas quais as placas de vidro são separadas por uma camada de ar. Se o afastamento entre as placas for de 10mm e as temperaturas das superfícies do vidro em contato com os ambientes estiverem nas temperaturas de 10°C e -15°C, qual é a taxa de perda de calor, através do ar, em uma janela de 1m x 2m?. A condutividade térmica do ar é $K_a=0,024 \text{ W/(m.k)}$. \[R.: \ q = 19.600 \text{ W}; \ q = 118 \text{ W}\].

6.4. Um circuito integrado (chip) quadrado de silício ($k=150 \text{ W/m.k}$) possuir lados com $w=5\text{ mm}$ e espessura $t=1\text{ mm}$. O circuito é montado em um substrato de tal forma que suas superfícies laterais e inferiores estão isoladas termicamente, enquanto a superfície superior encontra-se exposta a um refrigerante. Se 4W estão sendo dissipados nos circuitos montados na superfície inferior do (chip), qual a diferença entre as temperaturas das superfícies inferior e superior no estado estacionário? \[R.: \ \Delta t = 1,1^\circ \text{C}\].

![Diagrama do circuito integrado](image)

6.5. A parede de um forno industrial é construída em tijolo refratário com 0,15 m de espessura, cuja condutividade térmica é de 1,7 W/(m.K). Medidas efetuadas ao longo da operação em regime estacionário resultam temperaturas de 1400 e 1150 K nas paredes interna e externa, respectivamente. Qual é a quantidade de calor perdida através de uma parede que mede 0,5 m por 1,2 m? \[R.: \ 1700 \text{ W}\].
6.6. Você vivenciou um resfriamento por convecção se alguma vez estendeu sua mão para fora da janela de um veículo em movimento ou a imergiu em uma corrente de água. Com a superfície de sua mão a uma temperatura de 30°C, determine o fluxo de calor por convecção para a) uma velocidade do veículo de 35 km/h no ar a -5°C, com um coeficiente convectivo de 40 W/(m².k), e para b) uma corrente de água com velocidade de 0,2 m/s, temperatura de 10°C e coeficiente convectivo de 900 W/(m²/k). Qual a condição que o faria sentir mais frio?. Compare esses resultados com uma perda de calor de aproximadamente 30 W/m² em condições ambientais normais. [R.: a) 1400 W/m²; b) 18000 W/m²].

6.7. Um aquecedor elétrico encontra-se no interior de um longo cilindro de diâmetro igual a 30mm. Quando água, a uma temperatura de 25°C e velocidade de 1 m/s, escoa perpendicularmente ao cilindro, a potência por unidade de comprimento necessária para manter a superfície do cilindro a uma temperatura uniforme de 90°C é de 28 kW/m. Quando ar, também a 25°C, mas a uma velocidade de 10 m/s está escoando, a potência por unidade de comprimento necessária para manter a mesma temperatura superficial é de 400 W/m. Calcule e compare os coeficientes de transferência de calor por convecção para os escoamentos da água e do ar. [R.: \(h_{H_2O} = 4570 \text{ W/(m}^2\text{.K)} \); \(h_{ar} = 65.29 \text{ W/(m}^2\text{.K)} \)]

6.8. Um procedimento comum para medir a velocidade de correntes de ar envolve a inserção de um fio aquecido eletricamente (chamado de anemômetro de fio quente) no
escoamento do ar, com o eixo do fio orientado perpendicularmente à direção do escoamento. Considera-se que a energia elétrica dissipada no fio seja transferida para o ar por convecção forçada. Consequentemente, para uma potência elétrica especificada, a temperatura do fio depende do coeficiente de convecção, o qual, por sua vez, depende da velocidade do ar. Considere um fio com comprimento L=20mm e diâmetro D=0,5mm, para o qual foi determinada uma calibração na forma \(V = 6,25 \times 10^{-5} \cdot h^2\). A velocidade \(V\) e o coeficiente de convecção \(h\) têm unidades de (m/s) e (W/m².k), respectivamente. Em uma aplicação envolvendo ar a uma temperatura \(T_\infty=25^\circ\text{C}\), a temperatura superficial do anemômetro é mantida \(T_s = 75^\circ\text{C}\), com uma diferença de voltagem de 5V e uma corrente elétrica de 0,1A. Qual é a velocidade do ar? \([R.: V = 6,33 \text{ m/s}]\).

6.9 Um chip quadrado, com lado \(w=5\text{mm}\), opera em condições isotérmicas. O chip é posicionado em um substrato de modo que suas superfícies laterais e inferior estão isoladas termicamente, enquanto sua superfície superior encontra-se exposta ao escoamento de um refrigerante a \(T_\infty=15^\circ\text{C}\). A partirde considerações de confiabilidade, a temperatura do chip não pode exceder a \(T =85^\circ\text{C}\). Sendo a substância refrigerante o ar, com um coeficiente de transferência de calor por convecção correspondente de \(h=200\ W/(\text{m}^2.\text{k})\), qual é a potência permitida para o chip? Sendo o refrigerante um líquido dielétrico para o qual \(h=3000\ W/(\text{m}^2.\text{k})\), qual é a potência máxima permitida? \([R.: a) 0,35\ W; b) 5,25\ W]\).

6.10. Após o crepúsculo, a energia radiante pode ser sentida por uma pessoa situada próxima a um muro de tijolos. Estes muros têm frequentemente temperaturas ao redor de 43 °C, e valores práticos de emissividade do tijolo na ordem de 0,92. Qual seria o fluxo de calor radiante emitido por metro quadrado de um muro de tijolos a esta temperatura? \([R.: q/A = 521/\text{m}^2]\).

6.11. Uma fornalha industrial tem a parede construída de tijolo refratário de 0,2m de espessura com \(k=1,0\ W/\text{m.K}\). Esta parede é revestida externamente por uma camada de isolante de 0,03m de espessura com \(k=0,07\ W/\text{m.K}\). A superfície interna da fornalha está a 980°C e a externa a 38°C. Calcular o calor transferido por metro quadrado em regime permanente. \([R.: 1,50.10^3\ W/\text{m}^2]\).

6.12. Um problema freqüente na engenharia é a determinação da espessura de um isolante que resulte num fluxo de calor especificado. Para a fornalha do problema (6.11), mantendo-se inalterada a parede de tijolos e empregando-se o mesmo material isolante, qual deverá ser a espessura deste isolante para permitir uma transferência de calor de, no máximo, 900W/m²?. \([R.: \Delta x_b \approx 0,06\text{m}]\).
6.13. Uma parede composta de três camadas é constituída por uma chapa de alumínio de 0,5m de espessura, uma camada de asbesto com espessura \((K_{asb}=0,1660\,\text{W/m.K})\) de 0,25 cm e uma camada de lã de rocha com 2,0 cm de espessura (massa específica 64 kg/m\(^3\)); a camada de asbesto é central. A superfície externa do alumínio está a 500\(^0\)C (\(K_{al}=268,08 \,\text{W/m.k}\)) e a superfície externa da lã de rocha (\(K_{lr}=0,0548\,\text{W/m.K}\)) está a 50\(^0\)C. Determinar o calor transferido por unidade de área. \([\text{R.: } 1184,08 \,\text{W/m}^2]\).
Quadro 1: Propriedades termofísicas de materiais estruturais para construção

<table>
<thead>
<tr>
<th>Descrição/Composição</th>
<th>Massa específica (ρ) (kg/m³)</th>
<th>Conduzividade térmica (K) [W/(m.K)]</th>
<th>Calor específico, (cp) [J/(kg.K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiais de alvenaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argamassa de cimento</td>
<td>1860</td>
<td>0,72</td>
<td>780</td>
</tr>
<tr>
<td>Tijolo, comum</td>
<td>1920</td>
<td>0,72</td>
<td>835</td>
</tr>
<tr>
<td>Tijolo, fachada</td>
<td>2083</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>Tijolo cerâmico, oco com 1 furo, 10 cm de espessura</td>
<td>-</td>
<td>0,52</td>
<td>-</td>
</tr>
<tr>
<td>Tijolo cerâmico, oco com 3 furo, 30 cm de espessura</td>
<td>-</td>
<td>0,69</td>
<td>-</td>
</tr>
<tr>
<td>Bloco de concreto, 3 furos ovais, areia/brita, 20 cm de espessura</td>
<td>-</td>
<td>1,0</td>
<td>-</td>
</tr>
<tr>
<td>Bloco de concreto, 3 furos ovais, agregado de carvão, 20 cm de espessura</td>
<td>-</td>
<td>0,67</td>
<td>-</td>
</tr>
<tr>
<td>Bloco de concreto, furo retangular, 2 furos, 20 cm de espessura, 16 kg</td>
<td>-</td>
<td>1,1</td>
<td>-</td>
</tr>
<tr>
<td>Bloco de concreto, furo retangular, com furos preenchidos, 20 cm de espessura, 16 kg</td>
<td>-</td>
<td>0,60</td>
<td>-</td>
</tr>
<tr>
<td>Materiais para reboco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reboco de cimento e areia</td>
<td>1860</td>
<td>0,72</td>
<td>-</td>
</tr>
<tr>
<td>Reboco de gesso branco e areia</td>
<td>1680</td>
<td>0,22</td>
<td>1085</td>
</tr>
<tr>
<td>Reboco de gesso branco e vermiculita</td>
<td>720</td>
<td>0,25</td>
<td>-</td>
</tr>
<tr>
<td>Placas de cimento-amianto</td>
<td>1920</td>
<td>0,58</td>
<td>-</td>
</tr>
<tr>
<td>Compensado de madeira</td>
<td>545</td>
<td>0,12</td>
<td>1215</td>
</tr>
<tr>
<td>Placas de gesso ou reboco</td>
<td>800</td>
<td>0,17</td>
<td>-</td>
</tr>
<tr>
<td>Revestimento, densidade regular</td>
<td>290</td>
<td>0,055</td>
<td>1300</td>
</tr>
<tr>
<td>Azulejo acústico</td>
<td>290</td>
<td>0,058</td>
<td>1340</td>
</tr>
<tr>
<td>Compensado, divisória</td>
<td>640</td>
<td>0,094</td>
<td>1170</td>
</tr>
<tr>
<td>Compensado, alta densidade</td>
<td>1010</td>
<td>0,15</td>
<td>1380</td>
</tr>
<tr>
<td>Aglomerado, baixa densidade</td>
<td>590</td>
<td>0,078</td>
<td>1300</td>
</tr>
<tr>
<td>Aglomerado, alta densidade</td>
<td>1000</td>
<td>0,170</td>
<td>1300</td>
</tr>
<tr>
<td>Madeiras de lei (carvalho, bordo)</td>
<td>720</td>
<td>0,16</td>
<td>1255</td>
</tr>
<tr>
<td>Madeiras moles (abeto, pinho)</td>
<td>510</td>
<td>0,12</td>
<td>1380</td>
</tr>
</tbody>
</table>
Quadro 2: Propriedades termofísicas de materiais e sistemas de isolamento

<table>
<thead>
<tr>
<th>Descrição/Composição</th>
<th>Massa específica (ρ) (kg/m³)</th>
<th>Conduvidade térmica (K) [W/(m.K)]</th>
<th>Calor específico, (cp) [J/(kg.K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enchimentos não compactados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortiça, granulada</td>
<td>160</td>
<td>0,045</td>
<td>-</td>
</tr>
<tr>
<td>Sílica diatomácea, partículas grandes</td>
<td>350</td>
<td>0,069</td>
<td>-</td>
</tr>
<tr>
<td>Pó</td>
<td>400</td>
<td>0,091</td>
<td>-</td>
</tr>
<tr>
<td>Sílica diatomácea, pó fino</td>
<td>200</td>
<td>0,052</td>
<td>-</td>
</tr>
<tr>
<td>Fibra de vidro, derramada ou soprada</td>
<td>16</td>
<td>0,043</td>
<td>835</td>
</tr>
<tr>
<td>Vermiculita, flocos</td>
<td>80</td>
<td>0,068</td>
<td>835</td>
</tr>
<tr>
<td>Mantas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibra de vidro revestida de papel</td>
<td>16</td>
<td>0,046</td>
<td>-</td>
</tr>
<tr>
<td>Fibra de vidro revestida de papel</td>
<td>28</td>
<td>0,038</td>
<td>-</td>
</tr>
<tr>
<td>Fibra de vidro revestida de papel</td>
<td>40</td>
<td>0,035</td>
<td>-</td>
</tr>
<tr>
<td>Fibra de vidro, revestida para isolamento de dutos</td>
<td>32</td>
<td>0,038</td>
<td>835</td>
</tr>
<tr>
<td>Placas e blocos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidro celular</td>
<td>145</td>
<td>0,058</td>
<td>1000</td>
</tr>
<tr>
<td>Fibra de vidro, cola orgânica</td>
<td>105</td>
<td>0,036</td>
<td>795</td>
</tr>
<tr>
<td>Poliestireno, expandido – extrudado (R-12)</td>
<td>55</td>
<td>0,027</td>
<td>1210</td>
</tr>
<tr>
<td>Pérolas moldadas</td>
<td>16</td>
<td>0,040</td>
<td>1210</td>
</tr>
<tr>
<td>Placas de fibra mineral;material para telhados</td>
<td>265</td>
<td>0,049</td>
<td>-</td>
</tr>
<tr>
<td>Madeira, picada/aglomerada</td>
<td>350</td>
<td>0,087</td>
<td>1590</td>
</tr>
<tr>
<td>Cortiça</td>
<td>120</td>
<td>0,039</td>
<td>1800</td>
</tr>
<tr>
<td>Refletores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folhas de alumínio separando mantas de flocos de vidro; 10-12 camadas, em vácuo; para aplicações criogênicas (150K)</td>
<td>40</td>
<td>0,00016</td>
<td>-</td>
</tr>
<tr>
<td>Folha de alumínio e papel de vidro laminado; 75-150 camadas, em vácuo</td>
<td>120</td>
<td>0,000017</td>
<td>-</td>
</tr>
<tr>
<td>Pó de sílica típico, em vácuo</td>
<td>160</td>
<td>0,0017</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 3: Valores típicos do coeficiente de transferência de calor por convecção.

<table>
<thead>
<tr>
<th>Processo</th>
<th>(h) [W/(m².K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convecção natural</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>2 - 25</td>
</tr>
<tr>
<td>Líquidos</td>
<td>50 - 100</td>
</tr>
<tr>
<td>Convecção forçada</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>25 - 250</td>
</tr>
<tr>
<td>Líquidos</td>
<td>100 - 20.000</td>
</tr>
<tr>
<td>Convecção com mudança de fase</td>
<td></td>
</tr>
<tr>
<td>Ebulação e condensação</td>
<td>2500 – 100.000</td>
</tr>
</tbody>
</table>
Quadro 4: Variação da massa específica da água com a temperatura. [SI]

<table>
<thead>
<tr>
<th>T °C</th>
<th>(\rho) água (Kg/m(^3))</th>
<th>T °C</th>
<th>(\rho) água (Kg/m(^3))</th>
<th>T °C</th>
<th>(\rho) água (Kg/m(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1000,000</td>
<td>21</td>
<td>997,992</td>
<td>45</td>
<td>990,28</td>
</tr>
<tr>
<td>10</td>
<td>999,700</td>
<td>22</td>
<td>997,770</td>
<td>50</td>
<td>988,03</td>
</tr>
<tr>
<td>11</td>
<td>999,605</td>
<td>23</td>
<td>997,538</td>
<td>55</td>
<td>985,63</td>
</tr>
<tr>
<td>12</td>
<td>999,498</td>
<td>24</td>
<td>997,296</td>
<td>60</td>
<td>983,23</td>
</tr>
<tr>
<td>13</td>
<td>999,377</td>
<td>25</td>
<td>997,044</td>
<td>65</td>
<td>980,66</td>
</tr>
<tr>
<td>14</td>
<td>999,244</td>
<td>26</td>
<td>996,783</td>
<td>70</td>
<td>977,78</td>
</tr>
<tr>
<td>15</td>
<td>999,099</td>
<td>27</td>
<td>996,512</td>
<td>75</td>
<td>974,90</td>
</tr>
<tr>
<td>16</td>
<td>998,943</td>
<td>28</td>
<td>996,232</td>
<td>80</td>
<td>971,69</td>
</tr>
<tr>
<td>17</td>
<td>998,774</td>
<td>29</td>
<td>995,944</td>
<td>85</td>
<td>968,49</td>
</tr>
<tr>
<td>18</td>
<td>998,395</td>
<td>30</td>
<td>995,56</td>
<td>90</td>
<td>966,90</td>
</tr>
<tr>
<td>19</td>
<td>998,005</td>
<td>35</td>
<td>993,96</td>
<td>100</td>
<td>958,40</td>
</tr>
<tr>
<td>20</td>
<td>998,203</td>
<td>40</td>
<td>992,20</td>
<td>105</td>
<td>957,44</td>
</tr>
</tbody>
</table>

Quadro 5: Massa específica de gases ou vapores superaquecidos (à 0°C e 1,0 atmosfera. [SI]

<table>
<thead>
<tr>
<th>Gás ou Vapor</th>
<th>Fórmula</th>
<th>Massa específica (kg/m(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetileno</td>
<td>C(_2)H(_2)</td>
<td>1,173</td>
</tr>
<tr>
<td>Ar</td>
<td>-</td>
<td>1,293</td>
</tr>
<tr>
<td>Amonia</td>
<td>NH(_3)</td>
<td>0,771</td>
</tr>
<tr>
<td>Cloro</td>
<td>Cl(_2)</td>
<td>3,213</td>
</tr>
<tr>
<td>Dióxido de carbono</td>
<td>CO(_2)</td>
<td>1,977</td>
</tr>
<tr>
<td>Dióxido de enxofre</td>
<td>SO(_2)</td>
<td>2,927</td>
</tr>
<tr>
<td>Etano</td>
<td>C(_2)H(_6)</td>
<td>1,356</td>
</tr>
<tr>
<td>Etileno</td>
<td>C(_2)H(_4)</td>
<td>1,260</td>
</tr>
<tr>
<td>Fluor</td>
<td>F(_2)</td>
<td>1,696</td>
</tr>
<tr>
<td>Helio</td>
<td>H(_2)</td>
<td>0,179</td>
</tr>
<tr>
<td>Hidrogênio</td>
<td>H(_2)O</td>
<td>0,090</td>
</tr>
<tr>
<td>Isobutana</td>
<td>C(_4)H(_10)</td>
<td>2,673</td>
</tr>
<tr>
<td>Metano</td>
<td>CH(_4)</td>
<td>0,717</td>
</tr>
<tr>
<td>Monóxido de carbono</td>
<td>CO</td>
<td>1,135</td>
</tr>
<tr>
<td>n - Butana</td>
<td>C(_4)H(_10)</td>
<td>2,696</td>
</tr>
<tr>
<td>Nitrogênio</td>
<td>N(_2)</td>
<td>1,251</td>
</tr>
<tr>
<td>Oxido de nitrogênio</td>
<td>NO</td>
<td>1,340</td>
</tr>
<tr>
<td>Óxido nitroso</td>
<td>NO(_2)</td>
<td>1,978</td>
</tr>
<tr>
<td>Oxigênio</td>
<td>O(_2)</td>
<td>1,429</td>
</tr>
<tr>
<td>Ozônio</td>
<td>O(_3)</td>
<td>2,143</td>
</tr>
<tr>
<td>Propano</td>
<td>C(_3)H(_8)</td>
<td>2,020</td>
</tr>
<tr>
<td>Sulfeto de hidrogênio</td>
<td>H(_2)S</td>
<td>1,539</td>
</tr>
</tbody>
</table>
CAPÍTULO 7 – TEOREMA DO IMPULSO OU DA QUANTIDADE DE MOVIMENTO

7.1 Introdução

O conhecimento do teorema do impulso ou da quantidade de movimento é importante para o engenheiro porque está relacionado à inúmeras aplicações práticas, das quais se destacam: esforços sobre obstáculos; perda de carga em tubulações; máquinas de fluxo (bombas, turbinas, ventiladores), esforços sobre estruturas hidráulicas.

7.2 Definição

Defini-se como impulso ou quantidade de movimento de uma partícula fluida de massa \(dm \) animada com uma velocidade \(\vec{V} \), o produto:

\[
\vec{dI} = dm \cdot \vec{V}
\]

(7.1)

Por outro lado, 2ª. Lei de Newton, para um intervalo de tempo \(dt \), tem-se que a força resultante com que uma partícula fluida de massa \(dm \) é submetida para ser animada com a velocidade \(\vec{V} \) é dada por:

\[
\vec{dF} = \frac{d}{dt} \left(\vec{dI} \right)
\]

(7.2)

Ou seja:

“A força resultante de todas as forças externas (campo e contacto) é igual a variação do impulso com o tempo”.

Forças de contacto: normais (pressão); tangenciais (atrito).

Força de campo: gravidade

7.3 Equação do impulso ou da quantidade de movimento

Seja o volume de controle fixo em relação ao referencial inercial, figura 7.1. A descarga que flui através de \(\vec{dA} \) é igual a:

\[
\frac{dm}{dt} = \rho \cdot \vec{V} \cdot \vec{dA}
\]

(7.3)
Figura 7.1

\[dm = \rho \vec{V} \cdot dA \, dt \] \hspace{1cm} (7.4)

Das equações (7.1) e (7.4) tem-se:

\[d \, I = (\rho \vec{V} \cdot dA) \vec{V} \, dt \] \hspace{1cm} (7.5)

Ou, a variação do impulso no intervalo de tempo (dt) vale:

\[\frac{d}{dt} \left(d \, I \right) = (\rho \vec{V} \cdot dA) \vec{V} \] \hspace{1cm} (7.6)

Integrando para toda a superfície do volume de controle (Ac):

\[\int_{Ac} d \, I = \int_{Ac} (\rho \vec{V} \cdot dA) \vec{V} = \frac{d}{dt} \int_{Ac} d \, I \] \hspace{1cm} (7.7)

Por outro lado, como o escoamento é variável, para um elemento de massa (dm) no interior do volume de controle (Vc), tem-se:

\[dI = dm \vec{V} \] \hspace{1cm} (7.1)

\[\frac{d}{dt} \left(d \, I \right) = \frac{d}{dt} \left(dm \vec{V} \right) = \frac{d}{dt} \left(\rho \, dvol \, \vec{V} \right) \] \hspace{1cm} (7.8)

Para o volume total:
\[
\int_{Vc} \frac{d}{dt} (d \vec{I}) = \int_{Vc} \frac{d}{dt} (\rho dvol \vec{V})
\]
(7.9)

Como as variações de \((\rho)\) e \((\vec{V})\) são locais:

\[
\frac{d}{dt} \int_{Vc} d \vec{I} = \frac{\partial}{\partial t} \int_{Vc} \rho \vec{V} dvol.
\]
(7.10)

A variação total do impulso no tempo, na superfície e no interior do volume de controle resulta a equação do impulso ou da quantidade de movimento:

\[
\frac{d}{dt} \vec{I} = F_r = \int_{Vc} \rho \vec{V} (\vec{V} \cdot dA) + \frac{\partial}{\partial t} \int_{Vc} \rho \vec{V} dvol.
\]
(7.11)

"A força resultante de todas as forças (campo e contacto) que atuam sobre um fluido que no instante \(t\) ocupa o volume de controle \((Vc)\) é igual a variação da quantidade de movimento na superfície do \((Vc)\), por unidade de tempo, mais a variação da quantidade de movimento com o tempo da massa fluida que no instante \(t\) ocupa o \((Vc)\)."

Para escoamento permanente em relação ao volume de controle \((Vc)\), tem-se:

\[
\frac{\partial}{\partial t} = 0, \text{ então: }
\]

\[
F_r = \int_{Vc} \rho \vec{V} (\vec{V} \cdot dA)
\]
(7.12)

Ou em relação às componentes:

\[
F_x = \int_{Vc} \rho V_x (\vec{V} \cdot dA); \quad F_y = \int_{Vc} \rho V_y (\vec{V} \cdot dA); \quad F_z = \int_{Vc} \rho V_z (\vec{V} \cdot dA)
\]
(7.13)

As velocidades \((Vx), (Vy),\) e \((Vz)\) devem ser tomadas em relação ao volume de controle \((Vc)\), que por sua vez está parado em relação à terra.

Os sinais das forças \((Fx), (Fy),\) e \((Fz)\), assim como os das velocidades \((Vx), (Vy),\) e \((Vz)\), dependem das direções dos eixos \((x, y, e z)\) convencionado, já o produto \((\vec{V} \cdot dA)\) independe do sinal convencionado, dependendo apenas do sinal do \((\cos)\) do ângulo formado entre \((\vec{V})\) e \((d \hat{A})\), ou seja:
\[\vec{V} \cdot d \vec{A} = |\vec{V}| |d\vec{A}| \cos \theta \]

(7.14)

Na seção de entrada: \(\theta > 90^0 \), \(\theta < 270^0 \) (segundo e terceiro quadrantes), \(\cos \theta = (-) \).

Na seção de saída: \(\theta < 90^0 \), \(\theta > 270^0 \) (primeiro e quarto quadrantes), \(\cos \theta = (+) \).

Exemplo 1: Considere a saída (A2) do volume de controle mostrado na figura 7.2:

![Figura 7.2](image)

O ângulo formado entre a velocidade (V2) e a área (A2) é igual a zero, \(\theta = 0^0 \), então:

\[\vec{V} \cdot \vec{A} = |\vec{V}| |\vec{A}| \cos(0) = + V.A, \text{ e a componente da velocidade (Vx) é negativo (-V2), devido ao sentido contrário do referencial.} \]

Na escolha de um volume de controle qualquer é vantajoso adotar uma superfície normal às velocidades. Se a velocidade for constante não é necessário fazer a integração na superfície.

Exemplo 2: Seja um escoamento permanente através do volume de controle indicado na figura 7.3.

A força (Fx) que age no volume de controle é dada por:

- \(F_x = \rho \cdot V_2 \cdot A_2 \cdot V_x_2 - \rho \cdot V_1 \cdot A_1 \cdot V_x_1 \)

\[V_2 \cdot A_2 = V_1 \cdot A_1 = Q \]

- \(F_x = \rho \cdot Q \cdot (V_x_2 - V_x_1) \)

\[F_x = \rho \cdot Q \cdot (V_x_1 - V_x_2) \].
7.4 Exercícios

7.1 Deseja-se colocar um bocal na saída de um duto por onde escoa água. O bocal será fixado no duto através de 4 parafusos de diâmetro igual a 8 mm. A pressão na secção onde o bocal deve ser fixado é: \(p_1 = 3 \times 10^4 \text{ kgf/m}^2 \) (relativa). Com os dados fornecidos na figura, determine a tensão a que os parafusos estarão submetidos. \([R.: 141.12 \text{ kgf/cm}^2]\).

7.2 Um obstáculo de forma mostrada na figura, preenche parcialmente o final de uma tubulação de 0,30 m de diâmetro. Calcular a força (F) necessária para manter o obstáculo imóvel, quando a velocidade média da água na tubulação for de 3 m/s. Despreze as perdas.\([R.: 21 \text{ kgf}]\).
7.3 A água flui sobre um vertedor de uma barragem de concreto como mostrado na figura. A montante, a profundidade é de 12 m e a velocidade é de 30 cm/s, enquanto que a jusante, a profundidade vale 0,90 m. Se a largura do vertedor é 9,0 m, determine a força horizontal exercida sobre a barragem. [R.: \(F = 632,13 \text{ tonf.} \)].

7.4 Uma comporta de fundo está montada em um canal retangular de 4 m de largura. A uma pequena distância da comporta a altura da água é de 2 m. A abertura da comporta é de 0,50 m e o coeficiente de contração da lâmina a jusante da comporta vale 0,60. Determinar a força sobre a comporta. Despreze as perdas. [R.: \(R_x = 4.275,70 \text{ kgf} \)].
Quadro: Fatores de conversão

<table>
<thead>
<tr>
<th>Para converter de</th>
<th>para</th>
<th>Multiplicar por</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btu</td>
<td>joule</td>
<td>1.054,350</td>
</tr>
<tr>
<td>caloria</td>
<td>joule</td>
<td>4,184</td>
</tr>
<tr>
<td>Quilowatt-hora</td>
<td>joule</td>
<td>3,6 x 10^6</td>
</tr>
<tr>
<td>Watt-hora</td>
<td>joule</td>
<td>3.600</td>
</tr>
<tr>
<td>Força</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dina</td>
<td>newton (N)</td>
<td>1,0 x 10^-5</td>
</tr>
<tr>
<td>quilograma-força (kgf)</td>
<td>newton (N)</td>
<td>9,81</td>
</tr>
<tr>
<td>Comprimento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pé</td>
<td>metro (m)</td>
<td>0,3048</td>
</tr>
<tr>
<td>polegada</td>
<td>metro (m)</td>
<td>0,0254</td>
</tr>
<tr>
<td>micron</td>
<td>metro (m)</td>
<td>1,00 x 10^-6</td>
</tr>
<tr>
<td>milha</td>
<td>metro (m)</td>
<td>1,609,34</td>
</tr>
<tr>
<td>jarda</td>
<td>metro (m)</td>
<td>0,9144</td>
</tr>
<tr>
<td>Temperatura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celsius</td>
<td>Kelvin</td>
<td>K = C + 273,15</td>
</tr>
<tr>
<td>Fahrenheit</td>
<td>Celsius</td>
<td>C = 5/9.(F – 32)</td>
</tr>
<tr>
<td>Fahrenheit</td>
<td>Kelvin</td>
<td>C = 5/9.(F + 459,67)</td>
</tr>
<tr>
<td>Potência</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btu/segundo</td>
<td>watt</td>
<td>1.054,35</td>
</tr>
<tr>
<td>caloria/segundo</td>
<td>watt</td>
<td>4,184</td>
</tr>
<tr>
<td>horsepower (HP) - elétrico</td>
<td>watt</td>
<td>746,00</td>
</tr>
<tr>
<td>horsepower (CV) - métrico</td>
<td>watt</td>
<td>735,50</td>
</tr>
<tr>
<td>horsepower (CV) - métrico</td>
<td>horsepower (HP) - elétrico</td>
<td>0,986</td>
</tr>
<tr>
<td>Viscosidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>centipoise</td>
<td>N.s/m²</td>
<td>1,00x10^-3</td>
</tr>
<tr>
<td>centistoke</td>
<td>m²/s</td>
<td>1,00x10^-6</td>
</tr>
<tr>
<td>Pressão</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmosfera (atm)</td>
<td>Pascal, (Pa)</td>
<td>101.325</td>
</tr>
<tr>
<td>Bar (bar)</td>
<td>Pascal, (Pa)</td>
<td>10^5</td>
</tr>
<tr>
<td>Kgf/cm²</td>
<td>Pascal, (Pa)</td>
<td>98.066,5</td>
</tr>
<tr>
<td>Metro de água (mH₂O) a 40°C</td>
<td>Pascal, (Pa)</td>
<td>9,806,65</td>
</tr>
<tr>
<td>Milímetro de mercúrio (mmHg) ou (torr) a 0°C</td>
<td>Pascal, (Pa)</td>
<td>133,32</td>
</tr>
</tbody>
</table>